scholarly journals Nanomembrane folding origami: Geometry control and micro-machine applications

Author(s):  
Yang Zong ◽  
Xinyuan Zhang ◽  
Yue Wu ◽  
Yang Wang ◽  
Chang Liu ◽  
...  
Keyword(s):  
2020 ◽  
Vol 12 (12) ◽  
pp. 168781402098437
Author(s):  
Liu Jiang ◽  
Guo Zhiping ◽  
Miao Shujing ◽  
He Xiangxin ◽  
Zhu Xinyu

In order to meet the requirements of output torque, efficiency and compact shape of micro-spindles for small parts machining, a two-stage axial micro air turbine spindle with an axial inlet and outlet is proposed. Based on the k-ω turbulence model of SST, the flow field and operation characteristics of the two-stage axial micro air turbine spindle were studied using computational fluid dynamics (CFD) combined with an experimental study. We obtained the air turbine spindle under different working conditions of the loss and torque characteristics. When the inlet pressure was 300 KPa, the output speed of the two-stage turbine was 100,000 rpm, 9% higher than that of a single-stage turbine output torque. The total torque reached 6.39 N·mm, and the maximum efficiency of the turbine and the spindle were 42.2% and 32.3%, respectively. Through the research on the innovative structure of the two-stage axial micro air turbine spindle, the overall performance of the principle prototype has been significantly improved and the problems of insufficient output torque and low working efficiency in high-speed micro-machining can be solved practically, which laid a solid foundation for improving the machining efficiency of small parts and reducing the size of micro machine tool.


2010 ◽  
Vol 154-155 ◽  
pp. 310-313
Author(s):  
Xue Feng Bi ◽  
Jin Sheng Wang ◽  
Jia Shun Shi ◽  
Ya Dong Gong

Micromold manufacturing technology is very important for the mass production of micro parts. In this paper, modeling of micromold is established in 3D software firstly. The 3D modeling is input into machining simulation software Master CAM to simulate machining process. The machining parameters and cutting tool path are optimized in machining simulation. Machining G code of micromold obtained from post-process program of Master CAM is input into HMI system of Micro Machine Tool (MMT), and hence the micromold will be machined precisely in MMT.


Author(s):  
Shih-Ming Wang ◽  
Chih-Peng Yang ◽  
Zhe-Zhi Ye ◽  
Chuntai Yen

The products of 3C, bioscience, medical industry, and aerospace industry are becoming smaller and smaller. The components of the products are made of various materials with complex 3D shapes requiring high accuracy in their dimensions and contours. An accurate micro-/meso-scale CNC machine tool is an essential part of this technology. A new type of CNC micro machine tool with a toggle-like mechanism having the characteristics of low-cost and fine-resolution was developed. With geometric reduction principle, the machine can provide finer feed resolution and better positioning accuracy without using high-end driving components and controller. The kinematics model and characteristics of the machine were derived and analyzed. Modal analysis and dynamic compliance analysis were employed to design a light-weight structure with good stiffness. The accuracy calibration results showed the machine can reach a positioning accuracy of 500 nm. Prototype of the machine was built, and furthermore some micro machining examples were demonstrated in this paper.


2001 ◽  
Vol 25 (4−2) ◽  
pp. 1175-1178 ◽  
Author(s):  
T. Honda ◽  
T. Sakashita ◽  
K. Narahashi ◽  
J. Yamasaki
Keyword(s):  

2002 ◽  
Vol 26 (4) ◽  
pp. 653-656 ◽  
Author(s):  
M. Sendoh ◽  
K. Ishiyama ◽  
M. Yamaguchi ◽  
K. I. Arai

2015 ◽  
Vol 79 (1-4) ◽  
pp. 1-20 ◽  
Author(s):  
Pedro Ponce ◽  
Arturo Molina ◽  
Hector Bastida ◽  
Brian MacCleery

Sign in / Sign up

Export Citation Format

Share Document