Research on backflow characteristics in U-tube of forced circulation steam generator under ocean conditions

2021 ◽  
Vol 140 ◽  
pp. 103894
Author(s):  
Xiaojia Li ◽  
Tenglong Cong ◽  
Yiran Chen ◽  
Xiang Zhang
Author(s):  
Akber Pasha

In recent years the combined cycle has become a very attractive power plant arrangement because of its high cycle efficiency, short order-to-on-line time and flexibility in the sizing when compared to conventional steam power plants. However, optimization of the cycle and selection of combined cycle equipment has become more complex because the three major components, Gas Turbine, Heat Recovery Steam Generator and Steam Turbine, are often designed and built by different manufacturers. Heat Recovery Steam Generators are classified into two major categories — 1) Natural Circulation and 2) Forced Circulation. Both circulation designs have certain advantages, disadvantages and limitations. This paper analyzes various factors including; availability, start-up, gas turbine exhaust conditions, reliability, space requirements, etc., which are affected by the type of circulation and which in turn affect the design, price and performance of the Heat Recovery Steam Generator. Modern trends around the world are discussed and conclusions are drawn as to the best type of circulation for a Heat Recovery Steam Generator for combined cycle application.


Author(s):  
Peng Liu ◽  
Yanhua Zheng

Water-ingress accident, caused by steam generator heating tube rupture of a high temperature gas-cooled reactor (HTGR) is an important accident to consider because it will introduce positive reactivity leading the nuclear power increase rapidly, as well as the chemical reaction of graphite fuel elements and reflector structure material with steam. Researches and simulations (Zuoyi Zhang et al. 1995; Zheng Yanhua et al. 2009) have been carried out for calculating the total amount of water ingress and to validate the safety and security of HTR. The water ingress amount, which is our mainly concerned, ranges from a few hundred kilograms to thousands of kilograms, because of the different reactors and different computing methods. The place, where the water deposits, is most likely to be the bottom of the steam generator.. Such liquid water removal, with the approach of providing a forced circulation in primary loop and accelerating the evaporation, is analyzed in this paper. Many experimental data have been got on water evaporation rate (Dalton et al.; Willis Carrie et al. 1914; Yoshida, Hyodo et al. 1970; Sweer et al. 1976; Pauken et al. 1995). All these formulas have a common form, ṁ = hc(Pw − Pa)/hw, which shows the relationship between evaporation rate and velocity over water face, water temperature and the relative partial pressure of the water vapor. This formula has been used widely in chemical industry and other fields and shows good agreement. FLUENT CFD code (ANSYS Fluent 14) is used for the calculation of the distribution of the flow and temperature fields. The evaporation rate is estimate combined thermal fluid data with empirical formula. As the working condition of empirical formula and that of actual reactor don’t match very well, sensitivity analysis is necessary in this report.


Author(s):  
E. C. Hunt

The characteristics of heat recovery steam generation are compared to fully fired steam generators. Methods for stating performance are discussed. A compact forced circulation design is presented in some detail with comments on possible arrangements, construction methods, materials, and the use of supplementary firing. The importance of parallel control design to the ultimate success of the steam generator performance and operation is presented.


1980 ◽  
Vol 102 (1) ◽  
pp. 14-19 ◽  
Author(s):  
H. C. U¨nal

Accurate and simple correlations are presented to determine the inception conditions of density-wave oscillations in steam generator tubes. The correlations predict the power at the start of the density-wave oscillations within about 6.5 percent accuracy for long (i.e., L ≥ 10 m) forced circulation steam generator tubes and within about 20 percent accuracy for natural circulation and short forced circulation steam generator tubes. The ranges of the operating conditions and geometries for the data used to establish the correlations are as follows: Forced circulation tubes: Geometry: circular-straight tubes and serpentines, a circular coil and a rectangular straight tube; type of heating: electrical or sodium heating; the ratio of the heated length to diameter: 153–9502; pressure: 4.1–17.3 MN/m2; outlet steam quality: 0.27–1.85; inlet subcooling: 2.8–245.9 K; mass velocity: 118–2088 kg/m2s. Natural circulation tubes: Geometry and heating conditions: electrically heated circular tubes and annuli; ratio of the heated length to diameter: 34–489; pressure: 0.2–7.1 MN/m2; outlet steam quality: 0.04–0.62; inlet subcooling: 0–244 K; mass velocity: 529–1230 kg/m2s. The number of data considered is 106 for forced circulation tubes and 110 for natural circulation tubes.


Author(s):  
Andrew R. Plotkin ◽  
Kevin M. Toupin ◽  
Craig B. Gillum ◽  
Robert J. Rancatore ◽  
Tianliang Yang ◽  
...  

The movement for energy independence coupled with aggressive renewable energy goals and government investment incentives has led the power industry to develop efficient and reliable sources of renewable power. In a power tower system a central Solar Receiver Steam Generator (SRSG) is surrounded by a field of mirrors (heliostats) that focus and concentrate sunlight onto the receiver tubes. The energy from the sunlight is used to generate and superheat steam for electric production. The Ivanpah Solar Electric Generating System (ISEGS) project, located in Ivanpah, CA, consists of three 126 MWg units, to power approximately 140,000 homes. The Ivanpah SRSG’s are forced circulation drum-type boilers with single reheat; located on top of a 400 ft (122 m) steel tower [1]. This paper will discuss the development, constraints, and unique design challenges of the Riley Power Inc. (RPI) SRSG selected for the Ivanpah project. Process descriptions and predicted unit performance are presented, along with comparisons to typical fossil boilers. First of kind concepts and engineering design achievements are discussed for what will be the largest power tower project in the world.


2018 ◽  
Author(s):  
Xiang Yu ◽  
Baozhi Sun ◽  
Jianxin Shi ◽  
Wanze Wu ◽  
Zhirui Zhao

Sign in / Sign up

Export Citation Format

Share Document