scholarly journals Gas Turbine Heat Recovery Steam Generators for Combined Cycles Natural or Forced Circulation Considerations

Author(s):  
Akber Pasha

In recent years the combined cycle has become a very attractive power plant arrangement because of its high cycle efficiency, short order-to-on-line time and flexibility in the sizing when compared to conventional steam power plants. However, optimization of the cycle and selection of combined cycle equipment has become more complex because the three major components, Gas Turbine, Heat Recovery Steam Generator and Steam Turbine, are often designed and built by different manufacturers. Heat Recovery Steam Generators are classified into two major categories — 1) Natural Circulation and 2) Forced Circulation. Both circulation designs have certain advantages, disadvantages and limitations. This paper analyzes various factors including; availability, start-up, gas turbine exhaust conditions, reliability, space requirements, etc., which are affected by the type of circulation and which in turn affect the design, price and performance of the Heat Recovery Steam Generator. Modern trends around the world are discussed and conclusions are drawn as to the best type of circulation for a Heat Recovery Steam Generator for combined cycle application.

2020 ◽  
Vol 8 (9) ◽  
pp. 726
Author(s):  
Wahyu Nirbito ◽  
Muhammad Arif Budiyanto ◽  
Robby Muliadi

This study explains the performance analysis of a propulsion system engine of an LNG tanker using a combined cycle whose components are gas turbine, steam turbine, and heat recovery steam generator. The researches are to determine the total resistance of an LNG tanker with a capacity of 125,000 m3 by using the Maxsurf Resistance 20 software, as well as to design the propulsion system to meet the required power from the resistance by using the Cycle-Tempo 5.0 software. The simulation results indicate a maximum power of the system of about 28,122.23 kW with a fuel consumption of about 1.173 kg/s and a system efficiency of about 48.49% in fully loaded conditions. The ship speed can reach up to 20.67 knots.


Author(s):  
H. H. Finckh ◽  
H. Pfost

Unfired combined cycles achieve superior efficiencies at low emission levels. The potential and efficiency limits are investigated and the possibilities for enhancing efficiency are described. It is demonstrated that limited supplementary firing of the heat recovery steam generator can be an interesting alternative and that this allows efficiency and plant size to be increased. The effects of supplementary firing on NOx emissions are also shown.


2002 ◽  
Vol 124 (3) ◽  
pp. 496-502 ◽  
Author(s):  
B. E. Lee ◽  
S. B. Kwon ◽  
C. S. Lee

Computational and experimental studies are performed to investigate the effect of swirl flow of gas turbine exhaust gas (GTEG) in an inlet duct of a heat recovery steam generator (HRSG). A supplemental-fired HRSG is chosen as the model studied because the uniformity of the GTEG at the inlet plane of the duct burner is essential in such applications. Both velocity and oxygen distributions are investigated at the inlet plane of the duct burner installed in the middle of the HRSG transition duct. Two important parameters, the swirl angle of GTEG and the momentum ratio of additional air to GTEG, are chosen for the investigation of mixing between the two streams. It has been found that a flow correction device (FCD) is essential to provide a uniform gas flow distribution at the inlet plane of the duct burner.


Author(s):  
P. J. Dechamps

Natural gas fired combined cycle power plants now take a substantial share of the power generation market, mainly because they can be delivering power with a remarkable efficiency shortly after the decision to install is taken, and because they are a relatively low capital cost option. The power generation markets becoming more and more competitive in terms of the cost of electricity, the trend is to go for high performance equipments, notably as far as the gas turbine and the heat recovery steam generator are concerned. The heat recovery steam generator is the essential link in the combined cycle plant, and should be optimized with respect to the cost of electricity. This asks for a techno-economic optimization with an objective function which comprises both the plant efficiency and the initial investment. This paper applies on an example the incremental cost method, which allows to optimize parameters like the pinch points and the superheat temperatures. The influence of the plant load duty on this optimization is emphasized. This is essential, because the load factor will not usually remain constant during the plant life-time. The example which is presented shows the influence of the load factor, which is important, as the plant goes down in merit order with time, following the introduction of more modern, more efficient power plants on the same grid.


Author(s):  
Akber Pasha

Today the Heat Recovery Steam Generator (HRSG) has become an integral part of the combined cycle or Cogen plant because of its influence on other equipment. Therefore, the optimization of the HRSG has become one of the prime targets to improve the overall efficiency. The paper presents recent developments and concepts used in HRSG design which improve either the efficiency or the range of performance or both. The paper discusses three major areas of a HRSG - Superheater/Reheater, Economizer, and LP Evaporator/Feedwater Preheater. Depending upon the requirement, the user can implement one or more of the concepts to improve the total performance and/or the reliability.


Sign in / Sign up

Export Citation Format

Share Document