Vortex shedding induced vibration of thin strip in confined rectangular channel

2021 ◽  
Vol 141 ◽  
pp. 103951
Author(s):  
Botao Zhang ◽  
Shengjie Gong ◽  
Shichang Dong ◽  
Zhenqin Xiong ◽  
Zhen Zhang
2009 ◽  
Vol 131 (11) ◽  
Author(s):  
Chuan Ping Shao ◽  
Jian Zhong Lin

A thin strip cross-sectional element is used to suppress vortex shedding from a plate with a width to thickness ratio of 4.0 at incidence angles in the range of 0–90 deg and a Reynolds number of 1.1×104. The axes of the element and plate are parallel. The incidence angle of the element is 90 deg and the ratio of strip width to plate thickness is 0.5. Extensive measurements of wake velocities, together with flow visualization, show that vortex shedding from both sides of the plate is suppressed at incidence angles in the range of 0–55 deg if the element is placed at points in effective zones. Unilateral vortex shedding occurs if the element is applied at points in unilateral effective zones. The changes in sizes and locations of the effective and unilateral effective zones with the change in plate incidence are investigated, and the mechanism of the control is discussed. Two patterns of unilateral vortex shedding are observed. Pattern I occurs on the side where there is no element, and oppositely, pattern II occurs on the side where the element resides. A resonance model is proposed to illustrate the occurrence of pattern II unilateral shedding. The phenomenon of unilateral vortex shedding means that the vortex can be generated without strong interaction between the shear layers separated from the bluff body.


Author(s):  
Lifang Liu ◽  
Daogang Lu ◽  
Quanxing Li

A two-dimensional code was developed to simulate vortex shedding characteristic and flow-structure interaction (FSI) of plate-type structures. In the code the physical component boundary fitted coordinate (PCBFC) was used to deal with the curve boundary. The arbitrary Lagrangian Eulerian (ALE) method was used to realize the grid movement. A barrier unit idea was adopted to deal with the boundary of fluid domain and solid domain in the code. The code was validated by comparing the numerical simulation results with experimental data. It was found that the vortex shedding phenomena in case of rectangular cylinder are strongly related to the length of the rectangular cylinder in the stream line.


1990 ◽  
Vol 87 (4) ◽  
pp. 351-356
Author(s):  
D. Senk ◽  
Ch. Schneider ◽  
R. Kopp
Keyword(s):  

2018 ◽  
Vol 5 (1) ◽  
pp. 31-36
Author(s):  
Md Monirul Islam ◽  
Muztuba Ahbab ◽  
Md Robiul Islam ◽  
Md Humayun Kabir

For many solitary wave applications, various approximate models have been proposed. Certainly, the most famous solitary wave equations are the K-dV, BBM and Boussinesq equations. The K-dV equation was originally derived to describe shallow water waves in a rectangular channel. Surprisingly, the equation also models ion-acoustic waves and magneto-hydrodynamic waves in plasmas, waves in elastic rods, equatorial planetary waves, acoustic waves on a crystal lattice, and more. If we describe all of the above situation, we must be needed a solution function of their governing equations. The Tan-cot method is applied to obtain exact travelling wave solutions to the generalized Korteweg-de Vries (gK-dV) equation and generalized Benjamin-Bona- Mahony (BBM) equation which are important equations to evaluate wide variety of physical applications. In this paper we described the soliton behavior of gK-dV and BBM equations by analytical system especially using Tan-cot method and shown in graphically. GUB JOURNAL OF SCIENCE AND ENGINEERING, Vol 5(1), Dec 2018 P 31-36


2005 ◽  
Vol 36 (4) ◽  
pp. 311-318 ◽  
Author(s):  
R. Bunker ◽  
M. YA. Belen'kii ◽  
M. A. Gotovskii ◽  
B. S. Fokin ◽  
S. A. Isaev

Sign in / Sign up

Export Citation Format

Share Document