Thermal degradation during melt processing of poly(ethylene oxide), poly(vinylidenefluoride-co-hexafluoropropylene) and their blends in the presence of additives, for conducting applications

2006 ◽  
Vol 91 (4) ◽  
pp. 634-640 ◽  
Author(s):  
Piotr Malik ◽  
Mickaël Castro ◽  
Christian Carrot
2017 ◽  
Vol 131 (1) ◽  
pp. 325-334 ◽  
Author(s):  
Matko Erceg ◽  
Irena Krešić ◽  
Nataša Stipanelov Vrandečić ◽  
Miće Jakić

2006 ◽  
Vol 101 (5) ◽  
pp. 3067-3072 ◽  
Author(s):  
S. P. Vijayalakshmi ◽  
Ashok Raichur ◽  
Giridhar Madras

2009 ◽  
Vol 113 (10) ◽  
pp. 2984-2989 ◽  
Author(s):  
Andrei Choukourov ◽  
Andrey Grinevich ◽  
Oleksandr Polonskyi ◽  
Jan Hanus ◽  
Jaroslav Kousal ◽  
...  

St open ◽  
2021 ◽  
Vol 2 ◽  
pp. 1-13
Author(s):  
Anđela Čović ◽  
Nataša Stipanelov Vrandečić

Aim: To investigate whether the sample preparation process of poly(ethylene oxide) (PEO) affects kinetic analysis of the thermal degradation process. Kinetic analysis was performed to describe the course of a chemical reaction regardless of the reaction conditions and the reaction system complexity. One differential method, the Friedman method, and one integral Kissinger-Akahira-Sunose method (KAS), were applied in this work. Methods: The PEO sample was prepared in 4 different ways. Thermogravimetric analysis was performed to determine the thermal degradation of prepared samples. Infrared spectroscopic analysis was performed during the preparation of the PEO film obtained by casting from the solution. Results: Dynamic thermal decomposition of PEO, regardless of the method of preparation, takes place through a single decomposition stage, which is manifested by the appearance of one peak on derivative thermogravimetric (DTG) curve. During the preparation of the PEO film, the procedure was carried out at a temperature higher than its melting temperature (Tm=65°C). After the cooling, the obtained sample didn’t solidify and it had an intense odor of acetic acid, which was confirmed by infrared spectroscopic analysis. Samples III and IV were re-prepared at a temperature lower than the melting point of PEO, obtaining samples of satisfactory quality. Conclusion: In order to prepare poly(ethylene oxide) films by solution casting technique, drying should be carried out at temperatures below the melting point of PEO. If TG analysis of pure PEO powder is compared with the results of hot pressed samples and solution cast samples, it can be concluded that the preparation of the sample doesn’t affect the thermal stability of the PEO. The dependence of activation energy calculated by the differential Friedman and integral KAS method on conversion is constant for all samples in a broad conversion range, regardless of how the samples were prepared. The hot pressed samples and solution cast samples have lower activation energy than the commercial PEO powder.


1989 ◽  
Vol 25 (7-8) ◽  
pp. 779-784 ◽  
Author(s):  
G. Gordon Cameron ◽  
Malcolm D. Ingram ◽  
M. Younus Qureshi ◽  
Helen M. Gearing ◽  
Luigi Costa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document