A DOPO based reactive flame retardant constructed by multiple heteroaromatic groups and its application on epoxy resin: curing behavior, thermal degradation and flame retardancy

2019 ◽  
Vol 167 ◽  
pp. 10-20 ◽  
Author(s):  
Qianqian Zhang ◽  
Shuang Yang ◽  
Jun Wang ◽  
Jianwen Cheng ◽  
Qiaoxin Zhang ◽  
...  
2009 ◽  
Vol 94 (11) ◽  
pp. 2101-2106 ◽  
Author(s):  
Mustapha El Gouri ◽  
Abderrahim El Bachiri ◽  
Salah Eddine Hegazi ◽  
Mohamed Rafik ◽  
Ahmed El Harfi

2016 ◽  
Vol 45 (5) ◽  
pp. 308-312 ◽  
Author(s):  
Wei Li ◽  
Guilong Xu ◽  
Buqin Xu ◽  
Yi Wang ◽  
Jin Yang ◽  
...  

Purpose The flammability of epoxy resin is a major disadvantage in applications that require flame resistance. Epoxy monomers and hardeners containing flame-retardant elements are molecularly incorporated in the resin network are expected to exhibit better flame resistance than those borne on an additive approach. In recent years, because of health and environmental regulation, the use of waterborne coatings has received many attentions. However, waterborne epoxy resin curing agent with excellent flame retardancy has been seldom reported. The paper aims to study the preparation of waterborne P-N-containing epoxy resin curing agent and its performances (P-N – phosphorous and nitrogen). Design/methodology/approach Waterborne P-N-containing epoxy curing agent was prepared in this study using reactive flame retardant 10-(2,5-dihydroxyphenyl)-9,10-dihydro-9-xa-10-phosphaphenanthrene-10-oxide, liquid epoxy resin, triethylenetetramine and butyl glycidyl ether at the mole ratio of 1.0:2.0:2.0:2.0. Findings The results show that the epoxy thermoset from the prepared P-N-containing curing agent presents good flame retardancy and can pass the V-1 rating, and the cured epoxy thermoset film presents excellent performances such as water resistance, adhesion, impact resistance and pencil hardness. This study provides useful suggestions for the application of the water-borne flame retardancy epoxy resins in coating industry. Research limitations/implications Each step of products during the preparation of waterborne P-N-containing epoxy curing agent cannot be accurately tested. Originality/value This method for synthesis of waterborne P-N-containing epoxy curing agent is novel and could be used for various applications in epoxy coating industry.


2021 ◽  
Vol 2 (1) ◽  
pp. 24-48
Author(s):  
Quoc-Bao Nguyen ◽  
Henri Vahabi ◽  
Agustín Rios de Anda ◽  
Davy-Louis Versace ◽  
Valérie Langlois ◽  
...  

This study has developed novel fully bio-based resorcinol epoxy resin–diatomite composites by a green two-stage process based on the living character of the cationic polymerization. This process comprises the photoinitiation and subsequently the thermal dark curing, enabling the obtaining of thick and non-transparent epoxy-diatomite composites without any solvent and amine-based hardeners. The effects of the diatomite content and the compacting pressure on microstructural, thermal, mechanical, acoustic properties, as well as the flame behavior of such composites have been thoroughly investigated. Towards the development of sound absorbing and flame-retardant construction materials, a compromise among mechanical, acoustic and flame-retardant properties was considered. Consequently, the composite obtained with 50 wt.% diatomite and 3.9 MPa compacting pressure is considered the optimal composite in the present work. Such composite exhibits the enhanced flexural modulus of 2.9 MPa, a satisfying sound absorption performance at low frequencies with Modified Sound Absorption Average (MSAA) of 0.08 (for a sample thickness of only 5 mm), and an outstanding flame retardancy behavior with the peak of heat release rate (pHRR) of 109 W/g and the total heat release of 5 kJ/g in the pyrolysis combustion flow calorimeter (PCFC) analysis.


2014 ◽  
Vol 1053 ◽  
pp. 263-267 ◽  
Author(s):  
Xiu Juan Tian

Thermal stability and thermal degradation kinetics of epoxy resins with 2-(Diphenylphosphinyl)-1, 4-benzenediol were investegated by thermogravimetric analysis (TGA) at different heating rates of 5 K/min, 10 K/min, 20 K/min and 40 K/min. The thermal degradation kinetic mechanism and models of the modified epoxy resins were determined by Coast Redfern method.The results showed that epoxy resins modified with the flame retardant had more thermal stability than pure epoxy resin. The solid-state decomposition mechanism of epoxy resin and the modified epoxy resin corresponded to the controlled decelerating ځ˽̈́˰̵̳͂͆ͅ˼˰̴̱̾˰̸̵̈́˰̵̸̳̱̹̽̾̓̽˰̶̳̹̾̈́̿̾̓ͅ˰̶˸ځ˹˰̵̵͇͂˰̃˸́˽ځ˹2/3. The introduction of phosphorus-containing flame retardant reduced thermal degradation rate of epoxy resins in the primary stage, and promote the formation of carbon layer.


Sign in / Sign up

Export Citation Format

Share Document