Simultaneously improving the thermal stability, mechanical properties and flame retardancy of epoxy resin by a phosphorus/nitrogen/sulfur-containing reactive flame retardant

2021 ◽  
pp. 103108
Author(s):  
Chenhao Zhang ◽  
Huajun Duan ◽  
Chao Wan ◽  
Chentao Liu ◽  
Huijuan Zhao ◽  
...  
Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1251
Author(s):  
Yilin Liu ◽  
Bin Li ◽  
Miaojun Xu ◽  
Lili Wang

Ethylene vinyl acetate (EVA) copolymer has been used extensively in many fields. However, EVA is flammable and releases CO gas during burning. In this work, a composite flame retardant with ammonium polyphosphate (APP), a charring–foaming agent (CFA), and a layered double hydroxide (LDH) containing rare-earth elements (REEs) was obtained and used to improve the flame retardancy, thermal stability, and smoke suppression for an EVA matrix. The thermal analysis showed that the maximum thermal degradation temperature of all composites increased by more than 37 °C compared with that of pure EVA. S-LaMgAl/APP/CFA/EVA, S-CeMgAl/APP/CFA/EVA, and S-NdMgAl/APP/CFA/EVA could achieve self-extinguishing behavior according to the UL-94 tests (V-0 rating). The peak heat release rate (pk-HRR) indicated that all LDHs containing REEs obviously reduced the fire strength in comparison with S-MgAl. In particular, pk-HRR of S-LaMgAl/APP/CFA/EVA, S-CeMgAl/APP/CFA/EVA and S-NdMgAl/APP/CFA/EVA were all decreased by more than 82% in comparison with pure EVA. Furthermore, the total heat release (THR), smoke production rate (SPR), and production rate of CO (COP) also decreased significantly. The average mass loss rate (AMLR) confirmed that the flame retardant exerted an effect in the condensed phase of the composites. Meanwhile, the combination of APP, CFA, and LDH containing REEs allowed the EVA matrix to maintain good mechanical properties.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2349
Author(s):  
Woranan Netkueakul ◽  
Beatrice Fischer ◽  
Christian Walder ◽  
Frank Nüesch ◽  
Marcel Rees ◽  
...  

The effects of combining 0.1–5 wt % graphene nanoplatelet (GNP) and 3–30 wt % phosphorous flame retardant, 9,10- dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) as fillers in epoxy polymer on the mechanical, flame retardancy, and electrical properties of the epoxy nanocomposites was investigated. GNP was homogeneously dispersed into the epoxy matrix using a solvent-free three-roll milling process, while DOPO was incorporated into the epoxy resin by mechanical stirring at elevated temperature. The incorporation of DOPO reduced the crosslinking density of the epoxy resin. When using polyetheramine as a hardener, the structural rigidity effect of DOPO overshadowed the crosslinking effect and governed the flexural moduli of epoxy/DOPO resins. The flexural moduli of the nanocomposites were improved by adding GNP up to 5 wt % and DOPO up to 30 wt %, whereas the flexural strengths deteriorated when the GNP and DOPO loading were higher than 1 wt % and 10 wt %, respectively. Limited by the adverse effects on mechanical property, the loading combinations of GNP and DOPO within the range of 0–1 wt % and 0–10 wt %, respectively, in epoxy resin were further studied. Flame retardancy index (FRI), which depended on three parameters obtained from cone calorimetry, was considered to evaluate the flame retardancy of the epoxy composites. DOPO showed better performance than GNP as the flame retardant additive, while combining DOPO and GNP could further improve FRI to some extent. With the combination of 0.5 wt % GNP and 10 wt % DOPO, improvement in both mechanical properties and flame retardant efficiency of the nanocomposite was observed. Such a combination did not affect the electrical conductivity of the nanocomposites since the percolation threshold was at 1.6 wt % GNP. Our results enhance the understanding of the structure–property relationship of additive-filled epoxy resin composites and serve as a property constraining guidance for the composite manufacturing.


RSC Advances ◽  
2015 ◽  
Vol 5 (123) ◽  
pp. 101480-101486 ◽  
Author(s):  
Song Li ◽  
Hongxia Yan ◽  
Shuyao Feng ◽  
Song Niu

A novel reactive phosphorus-containing flame retardant was synthesized and used to modify bismaleimide resin. According to investigations, the modified bismaleimide resin has good mechanical properties, thermal stability and flame retardancy.


10.6036/10327 ◽  
2022 ◽  
Vol 97 (1) ◽  
pp. 98-103
Author(s):  
XIAN WANG ◽  
JINLONG ZHUO ◽  
TIANQING XING ◽  
Xingran Wang

In order to reduce flammability, smoke release and enhance thermal stability of epoxy resin (EP), iron powder is mixed with graphene oxide/ epoxy resin (GO/EP) composite by mechanical blending. The combustion performance of composite material is investigated through limiting oxygen index (LOI), Underwriters Laboratory (UL)-94 test, and cone calorimeter test (CCT). Thermogravimetric-Fourier transform infrared spectroscopy (TG-FTIR) and scanning electron microscope (SEM) are also used to explore the mechanism of flame retardancy and smoke suppression. Results show that, with the addition of 0.5% mass fraction of GO and the corresponding iron powder combination (EP3 sample), the LOI value can achieve 32.5% while reaching the UL-94 V0 rating. Compare with EP0, the peaks of heat release rate, smoke production rate, and smoke factor values of EP3 are decreased by 42%, 60%, and 50%, respectively. The char and TG-FTIR data of EP3 reveal that it has a more compact structure, good thermal stability, and produce fewer toxic gases and smoke. Reduction of GO could inhibit the degradation of EP, and iron catalyzes the formation of carbonaceous char on the surface. Thus, the thermal stability and flame retardancy of EP are improved significantly. This study provides a suitable way to prepare graphene/EP composites that contain iron catalyst and can be extended to the industrial manufacture of flame retardant polymer composites. Keywords: iron powder; epoxy resin; graphene oxide; flame retardant; thermal stability


Sign in / Sign up

Export Citation Format

Share Document