flame resistance
Recently Published Documents


TOTAL DOCUMENTS

338
(FIVE YEARS 117)

H-INDEX

21
(FIVE YEARS 8)

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bekinew Kitaw Dejene ◽  
Terefe Belachew Fenta ◽  
Chirato Godana Korra

Purpose The potential for burn injuries arises from contact with a hot surface, flame, hot liquid and steam hazards. The purpose of this study is to develop the flame retardant acrylic and cotton blend textile finished with Enset Ventricosum pseudostem sap (EPS). Design/methodology/approach The two fabric was produced from (30% acrylic with 70% cotton) and (35% acrylic with 65% cotton) blend. The extracted sap was made alkaline and applied on two mordanted blend fabrics. The effect of blend ratio, the concentration of EPS and treatment time on flammability, Flame retardant properties of both the control and the treated fabrics were analyzed in terms of vertical flammability based on the design of the experiment software using central composite design. The air permeability and tensile strength of treated and controlled fabric were measured. Findings The blended fabrics at different blended ratios were flame retardant with an optimized result of burning time 2.902 min and 2.775 min and char length 6.442 cm and 7.332 cm in the warp and weft direction, respectively, at a concentration of 520 ml and time 33.588 min. There was a slight significant change in mechanical strengths and air permeability. The thermal degradation and the pyrolysis of the fabric samples were studied using thermogravimetric analysis and the chemical composition by Fourier-transform infrared spectroscopy abbreviated as Fourier-transform infrared spectroscopy. The wash durability of the treated fabric at different blend ratios was carried out for the optimized sample and the test result shows that the flame retardancy property is durable up to 15 washes. Originality/value Development of flame retardant cotton and acrylic blend textile fabric finish with ESP was studied; this work provides application of EPS for flame resistance which is optimized statically and successfully applied for a flame retardant property on cotton-acrylic blend fabric.


2022 ◽  
Author(s):  
Raffael Wolff ◽  
Katharina Ehrmann ◽  
Patrick Knaack ◽  
Konstanze Seidler ◽  
Christian Gorsche ◽  
...  

Bakelite© or phenoplasts are considered the first synthetic polymers in the world. These resins, produced by polycondensation, have always been known for their chemical resistance, excellent flame resistance and thermal...


2021 ◽  
Vol 11 (1) ◽  
pp. 252-265
Author(s):  
Saeed Kamarian ◽  
Ruiwen Yu ◽  
Jung-il Song

Abstract The present work addresses the optimal design of sandwich panels made of flax fabric (FF)/vinyl ester (VE) composite face sheets and honeycomb VE core. The sandwich structures are first optimized in terms of flammability by obtaining the best combination of ammonium polyphosphate (APP), halloysite nanotube (HNT), and magnesium hydroxide (MH) as three flame retardants (FRs). Using the Taguchi method and horizontal burning test, it is shown that [6, 3, and 3%] and [1, 0.5, and 0%] are the optimal combinations of APP, HNT, and MH for the face sheets and core, respectively. Cone calorimeter test results indicate that the optimal FR combinations significantly decrease the mass lost rate (MLR), heat rate release (HRR), total smoke release (TSR), and maximum average release heat emission (MARHE). The FR sandwich structures are then geometrically optimized under compressive loads based on their weight. Different failure modes are considered as the design constraints of the optimization problem. Imperialist competitive algorithm (ICA), as a powerful meta-heuristic algorithm, is implemented to considerably reduce the computational cost of the optimization process. The results of this study show that proper combinations of FR additives can increase the flame retardancy while decreasing the weight of sandwich panels.


Author(s):  
Christopher R. Martin ◽  
Alexandrina Untaroiu ◽  
Kemu Xu ◽  
S M Mahbobur Rahman

Abstract This is a study of the suitability of preheat flame electrical resistance as a potential method for measuring the standoff distance an oxyfuel cutting torch and a work piece. Careful scrutiny of forty seven (47) individual experiments demonstrate that when cut quality is good, there is a linear repeatable relationship between the two with uncertainty about ± .3mm (.015in). As the cut quality degrades, the formation of top-edge dross reduces the electrical path length in the flame, and momentary reduction in the reaction rate in the kerf reduces the free electrons in the flame, causing rises in flame resistance. In these conditions, measurement uncertainty reduces to ± 1mm (.040in) or worse.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4216
Author(s):  
Peixin Yang ◽  
Hanguang Wu ◽  
Feifei Yang ◽  
Jie Yang ◽  
Rui Wang ◽  
...  

In this study, a novel flame retardant (PMrG) was developed by self-assembling melamine and phytic acid (PA) onto rGO, and then applying it to the improvement of the flame resistance of PLA. PMrG simultaneously decreases the peak heat release rate (pHRR) and the total heat release (THR) of the composite during combustion, and enhances the LOI value and the time to ignition (TTI), thus significantly improving the flame retardancy of the composite. The flame retardant mechanism of the PMrG is also investigated. On one hand, the dehydration of PA and the decomposition of melamine in PMrG generate non-flammable volatiles, such as H2O and NH3, which dilute the oxygen concentration around the combustion front of the composite. On the other hand, the rGO, melamine, and PA components in PMrG create a synergistic effect in promoting the formation of a compact char layer during the combustion, which plays a barrier role and effectively suppresses the release of heat and smoke. In addition, the PMrGs in PLA exert a positive effect on the crystallization of the PLA matrix, thus playing the role of nucleation agent.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6628
Author(s):  
Sin-Nan Chen ◽  
Pei-Kai Li ◽  
Tar-Hwa Hsieh ◽  
Ko-Shan Ho ◽  
Yu-Meng Hong

Flame-retardant coatings have drawn much attention in recent years. In this study, an inorganic sodium silicate-based intumescent flame-resistance coating with an excellent flameproof properties is developed by mainly utilizing sodium silicate as the ceramizable binder, via hydrolysis and self-condensation reaction. Fly ash, metakaoline, and wollastonite behave as supplement cementing materials. Major formulation encompasses the combination of the ammonium polyphosphate and pentaerythritol as the flame-retardant additives, and aluminum hydroxide or expandable graphite as the intumescence-improving filler agents. Expandable graphite was found to play an important role in the eventual performance of flame-resistance testing. The results showed that solid interaction forces can be formed between metakaoline and sodium silicate, resulting in a similar material to geopolymer with excellent physical properties. After high-temperature flame testing, a densely complex protective layer of carbon-char created on top of the robust silicon dioxide networks offers notable flame resistance. An optimal ratio in this inorganic intumescent coating contains sodium silicate—metakaoline (weight ratio = 9:1)—ammonium polyphosphate and pentaerythritol, aluminum hydroxide (3, 3, 10 wt.%)—expandable graphite (1 wt.%), which can create 4.7 times higher expansion ratio compared with neat sodium silicate matrix. The results of flame testing demonstrate only 387.1 °C and 506.3 °C on the back surface of steel substrate after one and three hours flaming (>1000 °C) on the other surface, respectively, which could meet the requirements according to the level of fire rating.


Sign in / Sign up

Export Citation Format

Share Document