Chitosan as a paradigm for biopolymer electrolytes in solid-state dye-sensitised solar cells

Polymer ◽  
2021 ◽  
pp. 124092
Author(s):  
Noriah Abdul Rahman ◽  
Sharina Abu Hanifah ◽  
Nadhratun Naiim Mobarak ◽  
Azizan Ahmad ◽  
Norasikin Ahmad Ludin ◽  
...  
Author(s):  
M. Fakis ◽  
M. Dori ◽  
E. Stathatos ◽  
Hsien-Hsin Chou ◽  
Yung-Sheng Yen ◽  
...  

ChemPhysChem ◽  
2021 ◽  
Author(s):  
Arianna Melillo ◽  
Rocio Garcia ◽  
Sergio Navalon ◽  
Pedro Atienzar ◽  
Belen Ferrer ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 404
Author(s):  
Abdul Sami ◽  
Arsalan Ansari ◽  
Muhammad Dawood Idrees ◽  
Muhammad Musharraf Alam ◽  
Junaid Imtiaz

Perovskite inorganic-organic solar cells are fabricated as a sandwich structure of mesostructured TiO2 as electron transport layer (ETL), CH3NH3PbI3 as active material layer (AML), and Spiro-OMeTAD as hole transport layer (HTL). The crystallinity, structural morphology, and thickness of TiO2 layer play a crucial role to improve the overall device performance. The randomly distributed one dimensional (1D) TiO2 nanowires (TNWs) provide excellent light trapping with open voids for active filling of visible light absorber compared to bulk TiO2. Solid-state photovoltaic devices based on randomly distributed TNWs and CH3NH3PbI3 are fabricated with high open circuit voltage Voc of 0.91 V, with conversion efficiency (CE) of 7.4%. Mott-Schottky analysis leads to very high built-in potential (Vbi) ranging from 0.89 to 0.96 V which indicate that there is no depletion layer voltage modulation in the perovskite solar cells fabricated with TNWs of different lengths. Moreover, finite-difference time-domain (FDTD) analysis revealed larger fraction of photo-generated charges due to light trapping and distribution due to field convergence via guided modes, and improved light trapping capability at the interface of TNWs/CH3NH3PbI3 compared to bulk TiO2.


2006 ◽  
Vol 90 (5) ◽  
pp. 549-573 ◽  
Author(s):  
Bin Li ◽  
Liduo Wang ◽  
Bonan Kang ◽  
Peng Wang ◽  
Yong Qiu

Molecules ◽  
2020 ◽  
Vol 25 (1) ◽  
pp. 198 ◽  
Author(s):  
Michèle Chevrier ◽  
Alberto Fattori ◽  
Laurent Lasser ◽  
Clément Kotras ◽  
Clémence Rose ◽  
...  

Chlorophyll a derivatives were integrated in “all solid-state” dye sensitized solar cells (DSSCs) with a mesoporous TiO2 electrode and 2′,2′,7,7′-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene as the hole-transport material. Despite modest power conversion efficiencies (PCEs) between 0.26% and 0.55% achieved for these chlorin dyes, a systematic investigation was carried out in order to elucidate their main limitations. To provide a comprehensive understanding of the parameters (structure, nature of the anchoring group, adsorption …) and their relationship with the PCEs, density functional theory (DFT) calculations, optical and photovoltaic studies and electron paramagnetic resonance analysis exploiting the 4-carboxy-TEMPO spin probe were combined. The recombination kinetics, the frontier molecular orbitals of these DSSCs and the adsorption efficiency onto the TiO2 surface were found to be the key parameters that govern their photovoltaic response.


2019 ◽  
Vol 7 (7) ◽  
pp. 7403-7411 ◽  
Author(s):  
Shanmuganathan Venkatesan ◽  
I-Ping Liu ◽  
Chiao-Wei Li ◽  
Chih-Mei Tseng-Shan ◽  
Yuh-Lang Lee

Sign in / Sign up

Export Citation Format

Share Document