CFD simulations of circulating fluidized bed risers, part II, evaluation of differences between 2D and 3D simulations

2014 ◽  
Vol 254 ◽  
pp. 115-124 ◽  
Author(s):  
Tingwen Li ◽  
Sreekanth Pannala ◽  
Mehrdad Shahnam
Author(s):  
Luca Cammarata ◽  
Paola Lettieri ◽  
Giorgio D. M. Micale ◽  
Derek Colman

This paper reports on CFD simulations of freely bubbling gas fluidized beds using CFX-4, a commercial code developed by CFX Ltd. (formerly AEA Technology). Two Eulerian-Eulerian modelling approaches, the granular kinetic model and the particle-bed model (Gibilaro, 2001), have been investigated. The particle bed model has been recently implemented in CFX-4 for 2D simulations and a numerical procedure was developed to allow for a tight control of the fluid-bed voidage at maximum packing during the simulations, see Lettieri et al. (2003). The work has now been extended to 3D simulations and qualitative and quantitative results are presented in this paper for both the 2D and 3D simulations of the bubbling fluidization of a Geldart Group B material. Results on bed expansion, bubble size and bubble hold-up are reported. In particular, simulated bubble size is compared with predictions given by the Darton et al. (1977) equation at different bed heights. The paper shows that the bubble size predicted by both the granular kinetic model and the particle-bed model is in good agreement with the Darton's equation.


2014 ◽  
Vol 254 ◽  
pp. 170-180 ◽  
Author(s):  
Tingwen Li ◽  
Aytekin Gel ◽  
Sreekanth Pannala ◽  
Mehrdad Shahnam ◽  
Madhava Syamlal

2014 ◽  
Vol 265 ◽  
pp. 2-12 ◽  
Author(s):  
Tingwen Li ◽  
Aytekin Gel ◽  
Sreekanth Pannala ◽  
Mehrdad Shahnam ◽  
Madhava Syamlal

Author(s):  
M. G. Kalola ◽  
Mahesh Dasar ◽  
K. P. Shete ◽  
R. S. Patil

The present work is associated with Circulating Fluidized Bed (CFB) technology, related to the energy sector. The applications of CFB technology span across wide range of areas i.e. boiler, gasifier, combustor, dryer, etc. In the present paper, CFD simulations using ANSYS-Fluent 14.5 were performed to study the effect of novel swirling perforated distributor on fluid dynamics characteristics like pressure drop along the riser and distributor, suspension density variations along the riser of the Circulating Fluidized Bed (CFB). The simulation results were also used to compare qualitatively and quantitatively the dead-zone formations in the four corners of riser just above the distributor plate for swirl and normal distributor plates. The riser alongwith distributor was modeled using Pro-E 5.0, and it was meshed in ICEM CFD 14.5. Post processing simulations were performed using Fluent 14.5. 3D CFD simulations were performed on the CFB riser of cross section 0.15 m × 0.15 m and height 2.85 m. RNG k-ε model was used for turbulence modeling. Eulerian model with Syamlal-O’Brien phase interaction scheme was used to simulate the two phase flow (air + sand mixture flow). RNG k-ε model was used for turbulence modeling of the flow inside the riser. The RNG turbulence model has a calculation for effective viscosity. Modeling and simulations were performed for normal perforated distributor plate and results obtained were compared with available experimental data. In this way, after validation of computational results, further CFD simulations were performed for novel geometry of swirl distributor plate. It is observed that suspension density (particles’ concentration) was more in the middle and upper region of the riser in case of swirl distributor plate. However, pressure drop across the distributor plate increased in the case of novel swirl distributor plate. The objective of significant reduction in the dead-zone formation just above the normal distributor plate was achieved through novel swirl distributor, which in-turn is expected to increase particles’ participation in combustion which takes place in oxygen rich middle portion of CFB riser and subsequently increases heat transfer rate in the CFB riser.


2008 ◽  
Vol 39 (1) ◽  
pp. 65-78
Author(s):  
Yu. S. Teplitskii ◽  
V. A. Borodulya ◽  
V. I. Kovenskii ◽  
E. P. Nogotov

Sign in / Sign up

Export Citation Format

Share Document