solid fuel combustion
Recently Published Documents


TOTAL DOCUMENTS

198
(FIVE YEARS 83)

H-INDEX

25
(FIVE YEARS 4)

2021 ◽  
Vol 291 ◽  
pp. 118138
Author(s):  
Wei Du ◽  
Shaojie Zhuo ◽  
Jinze Wang ◽  
Zhihan Luo ◽  
Yuanchen Chen ◽  
...  

2021 ◽  
Vol 25 (12) ◽  
pp. 15-23
Author(s):  
V.V. Samonin ◽  
E.A. Spiridonova ◽  
A.S. Zotov ◽  
M.L. Podvyaznikov ◽  
A.V. Garabajiu

Data demonstrate the possibility of manufacturing adsorbents by using inorganic industrial waste and provide raw material list for this purpose. Inorganic waste coming from water treatment, mining and construction industries, solid fuel combustion products, spent inorganic sorbents, catalysts and chemical absorbers, chemical, metallurgical and metal finishing industries waste are used as raw materials. Adsorbents production methods by using inorganic industrial waste have been analysed, and parameters of porous structure and adsorbents sorption activity in terms of organic compounds and cations of non-ferrous metals resulting from aqueous medium are listed.


2021 ◽  
Author(s):  
Vito A Ilacqua ◽  
Nicole Scharko ◽  
Jordan Zambrana ◽  
Daniel Malashock

We surveyed literature on measurements of indoor particulate matter in all size fractions, in residential environments free of solid fuel combustion. Data from worldwide studies from 1990-2019 were assembled into the most comprehensive collection to date. Out of 2,752 publications retrieved, 538 articles from 433 research projects met inclusion criteria and reported unique data, from which more than 2,000 unique sets of indoor PM measurements were collected. Distributions of mean concentrations were compiled, weighted by study size. Long-term trends, the impact of non-smoking, air cleaners, and the influence of outdoor PM were also evaluated. Similar patterns of indoor PM distributions for North America and Europe could reflect similarities in the indoor environments of these regions. Greater observed variability for all regions of Asia may reflect greater heterogeneity in indoor conditions, but also low numbers of studies for some regions. Indoor PM concentrations of all size fractions were mostly stable over the survey period, with the exception of observed declines in PM2.5 in European and North American studies, and in PM10 in North America. While outdoor concentrations were correlated with indoor concentrations across studies, indoor concentrations had higher variability, illustrating a limitation of using outdoor measurements to approximate indoor PM exposures.


2021 ◽  
Vol 2088 (1) ◽  
pp. 012015
Author(s):  
M V Fomenko ◽  
V B Prokhorov ◽  
N E Fomenko

Abstract The paper presents results of the furnace aerodynamics investigation using direct-flow burners and air nozzles (DFBAN) with solid slag removal (SSR). The studies were performed using the computational fluid dynamics software ANSYS Fluent. The paper includes recommendations for the development of effective solid fuel combustion schemes with DFBAN, methods for researching and optimization of the combustion aerodynamics with the use of DFBAN, optimization criteria, initial data for the study. The scheme for burning Kuznetsk lean coal with the use of DFBAN and SSR was developed. Several series of calculations were performed for the developed scheme. In these calculations, the dependencies of the indicators of efficiency, furnace ecological safety and reliability on the nozzles and burners positions, which are located in the first zone of the scheme, were found. The first stage of the optimization of the developed scheme burning solid fuel with the SSR was made.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6801
Author(s):  
Ewa Szatyłowicz ◽  
Wojciech Walendziuk

The production of thermal energy is one of the sources of environmental pollution, especially when it uses traditional fossil fuels (in particular hard and brown coal). Burning conventional fuels contributes to air pollution because of emitting gases and producing waste after the process of burning in the form of ash. The work below was aimed at determining the indirect emission of PAHs in the form of fly ash, depending on the type of fuel burned. The conducted research showed which solid fuel combustion content leaves the lowest content of PAH in the fly ash. This work contains the analysis and assessment of the content of 16 PAHs (polycyclic aromatic hydrocarbons) in fly ash from the combustion of five selected solid fuels in low-power boilers. The following fuels were chosen for the research: hard coal with granulation above 60 mm, coal with the grain size of 25–80 mm, coal with the grain size of 8–25 mm, pellets with the grain size of 6 mm, and mixed dry wood. The results of the research showed that the most frequent and most concentrated compounds were naphthalene and acenaphthylene from the PAH group. These hydrocarbons have the smallest number of rings in a molecule. It was also found that the content of the LMW (Low Molecular Weight Polycyclic Aromatic Hydrocarbons) fractions in the fly ash from the analyzed fuels in ∑PAHs exceeds 57% in the case of 6 mm pellets and in the case of the ash from wood and hard coal when the grain size >60 mm. The opposite dependence can be observed in the case of the HMW (High Molecular Weight Polycyclic Aromatic Hydrocarbons) fraction.


Author(s):  
Max Loebel Roson ◽  
Ryan Duruisseau-Kuntz ◽  
Meng Wang ◽  
Keifer Klimchuk ◽  
Robin J. Abel ◽  
...  

2021 ◽  
Vol 21 (19) ◽  
pp. 14893-14906
Author(s):  
Anna K. Tobler ◽  
Alicja Skiba ◽  
Francesco Canonaco ◽  
Griša Močnik ◽  
Pragati Rai ◽  
...  

Abstract. Kraków is routinely affected by very high air pollution levels, especially during the winter months. Although a lot of effort has been made to characterize ambient aerosol, there is a lack of online and long-term measurements of non-refractory aerosol. Our measurements at the AGH University of Science and Technology provide the online long-term chemical composition of ambient submicron particulate matter (PM1) between January 2018 and April 2019. Here we report the chemical characterization of non-refractory submicron aerosol and source apportionment of the organic fraction by positive matrix factorization (PMF). In contrast to other long-term source apportionment studies, we let a small PMF window roll over the dataset instead of performing PMF over the full dataset or on separate seasons. In this way, the seasonal variation in the source profiles can be captured. The uncertainties in the PMF solutions are addressed by the bootstrap resampling strategy and the random a-value approach for constrained factors. We observe clear seasonal patterns in the concentration and composition of PM1, with high concentrations during the winter months and lower concentrations during the summer months. Organics are the dominant species throughout the campaign. Five organic aerosol (OA) factors are resolved, of which three are of a primary nature (hydrocarbon-like OA (HOA), biomass burning OA (BBOA) and coal combustion OA (CCOA)) and two are of a secondary nature (more oxidized oxygenated OA (MO-OOA) and less oxidized oxygenated OA (LO-OOA)). While HOA contributes on average 8.6 % ± 2.3 % throughout the campaign, the solid-fuel-combustion-related BBOA and CCOA show a clear seasonal trend with average contributions of 10.4 % ± 2.7 % and 14.1 %, ±2.1 %, respectively. Not only BBOA but also CCOA is associated with residential heating because of the pronounced yearly cycle where the highest contributions are observed during wintertime. Throughout the campaign, the OOA can be separated into MO-OOA and LO-OOA with average contributions of 38.4 % ± 8.4 % and 28.5 % ± 11.2 %, respectively.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A. Yu. Kozhevnikov ◽  
D. I. Falev ◽  
S. A. Sypalov ◽  
I. S. Kozhevnikova ◽  
D. S. Kosyakov

AbstractSixteen priority polycyclic aromatic hydrocarbons (PAHs) were qualitatively and quantitatively assessed by high-performance liquid chromatography with fluorescence detection in snow samples collected at 46 sites of Arkhangelsk as a world’s largest city above 64 degrees north latitude. The average, maximum and minimum PAH concentrations in snow were 168, 665, and 16 ng/kg, respectively. The average toxic equivalent value in benzo(a)pyrene units was 3.6 ng/kg, which is three-fold lower than the established maximum permissible concentration and considered an evidence of a low/moderate level of snow pollution with PAHs. The pollution origin was assessed using specific markers based on PAHs ratios in the studied samples. The pyrogenic sources of PAH emission were predominate, whereas the significant contributions from both transport and solid fuel combustion were observed. Benzo(a)pyrene concentrations are highly correlated with the levels of other PAHs with higher molecular weights.


Sign in / Sign up

Export Citation Format

Share Document