Fabrication and cutting performance of cemented tungsten carbide micro-cutting tools

2011 ◽  
Vol 35 (4) ◽  
pp. 547-553 ◽  
Author(s):  
Kai Egashira ◽  
Shigeyuki Hosono ◽  
Sho Takemoto ◽  
Yusuke Masao
2016 ◽  
Vol 874 ◽  
pp. 227-231
Author(s):  
Kai Egashira ◽  
Kenichi Kuriyama ◽  
Keishi Yamaguchi ◽  
Minoru Ota

There have been few reports on the drilling of microholes on rod end faces by cutting, which can be employed for fabricating micronozzles or microneedles. Such drilling was therefore attempted in the present study using a micro turn-milling machine with the tool and workpiece axes being parallel. The drilling was performed on the end faces of brass rods with cemented tungsten carbide micro-cutting tools processed by electrical discharge machining (EDM). As a result, a microhole 12‍ μm in diameter was successfully drilled using a 10-μm-diameter tool at a feed speed of 0.5‍ μm/s. The feed speed could be increased to 25 μm/s for a tool with a diameter of 20 μm and body length of 50 μm.


2012 ◽  
Vol 523-524 ◽  
pp. 76-80 ◽  
Author(s):  
Takuya Furukawa ◽  
Yosuke Nomura ◽  
Kazuyuki Harada ◽  
Kai Egashira

The turning of straight micropins with a diameter smaller than 10 µm, which has not been reported so far, was carried out using micro turning tools made of cemented tungsten carbide. Tools of 50 µm diameter were fabricated by electrical discharge machining, which is suitable for fabricating micro cutting tools because it can deal with hard materials and carry out micromachining. A turning machine designed especially for micro turning tools was used in the experiments. A brass workpiece was turned using a tool with a length of cut of 100 µm at a feed speed of 3.0 µm/s, feed per revolution of 0.06 µm and depth of cut of 10–11 µm. As a result, a straight micropin of 7.5 µm diameter and 80 µm length was successfully turned. Furthermore, turning was also performed using a tool with a length of cut of 50 µm at a feed speed of 3.0 µm/s, feed per revolution of 0.06 µm and depth of cut of 8.5–20 µm to fabricate a straight micropin of 3 µm diameter and 30 µm length. This micropin is the pin with the smallest ever diameter fabricated by turning, to the best of our knowledge, indicating the possibility of further minimization of the machinable size in turning. Turning properties were also investigated to determine the maximum depth of cut and feed speed that can be employed without tool breakage.


2021 ◽  
Author(s):  
Xu Wang ◽  
Valentin L. Popov ◽  
Zhanjiang Yu ◽  
Yiquan Li ◽  
Jingkai Xu ◽  
...  

Abstract In the micro cutting process of SiCp/Al composites, the tool wear is serious due to the existence of reinforcement phase in the material, which greatly affects the machined surface integrity. In order to reduce the friction and adhesion at the tool-chip interface, fabricating micro texture on the tool surface could be a feasible solution. This work focuses on the study of the cutting performance of the textured cutting tools through micro cutting of SiCp/Al composites. The experiments were carried out using NTK-KM1CCGW060202H uncoated cemented carbide tools with micro-hole textures developed by pulsed fiber laser. The results indicate that the micro-textured tools can reduce the wear, sticking and the contact length between the tool-chip. Also, the surface quality can be improved. It is observed from the chip’s surface that the micro-textured tool can produce secondary cutting when machining SiCp/Al composite materials, the smaller the texture spacing, the more obvious the secondary cutting phenomenon. Furthermore, the cutting forces can be reduced using the micro-textured tool in most cases. However, when the texture spacing is too small the cutting force does not decrease. Finally, the surface roughness and surface residual stress of the machined workpiece are investigated. Textured tools have better results.


2007 ◽  
Vol 534-536 ◽  
pp. 1233-1236
Author(s):  
Geun Woo Park ◽  
Hyuck Sang Kwon

Multilayered coatings on tungsten carbide cutting tools are widely used for enhancing cutting performance. In this paper, we review the CVD TiC/TiCN multilayer as a function of the multilayer period. The TiC/TiCN multilayers in initial stage show preferred (220) orientation but shifts to (200) orientation with decreasing multilayer period. The nanohardness of TiC/TiCN multilayers were found to increase with decreasing multilayer period and shows a maximum of 23.8 GPa at a period = 33.5 nm.


2000 ◽  
Vol 123 (1) ◽  
pp. 78-83 ◽  
Author(s):  
R. Polini ◽  
P. D'Antonio ◽  
S. Lo Casto ◽  
V.F. Ruisi ◽  
E. Traversa

Sign in / Sign up

Export Citation Format

Share Document