Cutting surface quality analysis in micro ball end-milling of KDP crystal considering size effect and minimum undeformed chip thickness

2017 ◽  
Vol 50 ◽  
pp. 410-420 ◽  
Author(s):  
Ni Chen ◽  
Mingjun Chen ◽  
Chunya Wu ◽  
Xudong Pei
2018 ◽  
Vol 99 (9-12) ◽  
pp. 2777-2788 ◽  
Author(s):  
Qi Liu ◽  
Jian Cheng ◽  
Yong Xiao ◽  
Mingjun Chen ◽  
Hao Yang ◽  
...  

Author(s):  
Guo Dongming ◽  
Ren Fei ◽  
Sun Yuwen

The prediction of five-axis ball-end milling forces is quite a challenge due to difficulties of determining the underformed chip thickness and engaged cutting edge. To solve these concerns, this paper presents a new mechanistic model of cutting forces based on tool motion analysis. In the model, for undeformed chip thickness determination, an analytical model is first established to describe the sweep surface of cutting edge during the five-axis ball-end milling process of curved geometries. The undeformed chip thickness is then calculated according to the real kinematic trajectory of cutting edges under continuous change of the cutter axis orientation. A Z-map method is used to verify the engaged cutting edge and cutting coefficients are subsequently calibrated. The mechanistic method is applied to predict the cutting force. Validation tests are conducted under different cutter postures and cutting conditions. The comparison between predicted and measured values demonstrates the applicability of the proposed prediction model of cutting forces.


Author(s):  
Junwei Liu ◽  
Kai Cheng ◽  
Hui Ding ◽  
Shijin Chen ◽  
Liang Zhao

SiCp/Al composites are widely used owing to their outstanding performance. However, due to the existence of brittle SiC, surface defects caused by particle fracture damage the surface quality severely. Meanwhile, due to small cutting parameters during the micro-milling process, especially the undeformed chip thickness, which is mainly determined by the feed per tooth, the size effect of matrix also damages the surface quality. In this study, a method by realizing the ductile regime machining of the particle and diverting away the defects of particles and matrix is proposed to select the cutting parameters and improve the surface quality in micro-milling SiCp/Al composites. Suitable range of values of the feed per tooth for side milling and end milling are obtained by this method and validated by micro-experiments. The results show that the size effect of Al and removal ways of the SiC particles affect the machined surface simultaneously. By using suitable feed per tooth, weak size effect of Al and most of the particles’ ductile regime removing can be realized, leading to the generation of the best surface. Additionally, the machining effects of this method are more prominent in end milling than in side milling.


Author(s):  
H Ding ◽  
S-J Chen ◽  
R Ibrahim ◽  
K Cheng

In precision and micro cutting processes, the tool cutting edge radius is generally quite large compared to the undeformed chip thickness, which can cause ploughing/rubbing between the tool and the workpiece and thus affect surface finish, tool wear, and burr formation. This paper investigates the effect of the size effect on top burr formation in two-dimensional vibration-assisted micro end milling (2D VAMEM). This is achieved by studying the effects of the ratio of undeformed chip thickness to the cutting edge radius, and the ratio of the time when the undeformed chip thickness is less than the minimum chip thickness to the total cutting time on top burr formation, using a model that integrates the chip thickness model of the 2D VAMEM and the minimum chip thickness prediction model. The corresponding experiments are carried out to verify the integrated model. It is found that feed per tooth has a significant effect on the height of the top burr, and the use of vibration-assisted cutting in micro end milling can minimize the size effect and improve the cutting performance, thereby reducing the height of the top burr. In addition, selecting suitable vibration parameters can significantly decrease the height of the top burr. The integrated model can be used to optimize the machining parameters to reduce burr size and further study the size effect on cutting force, surface roughness, and tool wear in 2D VAMEM.


2000 ◽  
Vol 123 (3) ◽  
pp. 369-379 ◽  
Author(s):  
Rixin Zhu ◽  
Shiv G. Kapoor ◽  
Richard E. DeVor

A mechanistic modeling approach to predicting cutting forces is developed for multi-axis ball end milling of free-form surfaces. The workpiece surface is represented by discretized point vectors. The modeling approach employs the cutting edge profile in either analytical or measured form. The engaged cut geometry is determined by classification of the elemental cutting point positions with respect to the workpiece surface. The chip load model determines the undeformed chip thickness distribution along the cutting edges with consideration of various process faults. Given a 5-axis tool path in a cutter location file, shape driving profiles are generated and piecewise ruled surfaces are used to construct the tool swept envelope. The tool swept envelope is then used to update the workpiece surface geometry employing the Z-map method. A series of 3-axis and 5-axis surface machining tests on Ti6A14V were conducted to validate the model. The model shows good computational efficiency, and the force predictions are found in good agreement with the measured data.


2004 ◽  
Vol 47 (1) ◽  
pp. 2-7 ◽  
Author(s):  
Hisanobu TERAI ◽  
Minghui HAO ◽  
Koichi KIKKAWA ◽  
Yoshio MIZUGAKI

Procedia CIRP ◽  
2018 ◽  
Vol 71 ◽  
pp. 260-266 ◽  
Author(s):  
Qi Liu ◽  
Jian Cheng ◽  
Yong Xiao ◽  
Hao Yang ◽  
Mingjun Chen

1999 ◽  
Vol 121 (4) ◽  
pp. 586-592 ◽  
Author(s):  
Y. Altıntas¸ ◽  
E. Shamoto ◽  
P. Lee ◽  
E. Budak

The paper presents an analytical method to predict stability lobes in ball end milling. Analytical expressions are based on the dynamics of ball end milling with regeneration in the uncut chip thickness, time varying directional factors and the interaction with the machine tool structure. The cutting force coefficients are derived from orthogonal cutting data base using oblique transformation method. The influence of cutting coefficients on the stability is investigated. A computationally efficient, an equivalent average cutting force coefficient method is developed for ball end milling. The prediction of stability lobes for ball end milling is reduced to the solution of a simple quadratic equation. The analytical results agree well with the experiments and the computationally expensive and complex numerical time domain simulations.


Sign in / Sign up

Export Citation Format

Share Document