Integrating time-optimal motion profiles with position control for a high-speed permanent magnet linear synchronous motor planar motion stage

2021 ◽  
Vol 68 ◽  
pp. 106-123
Author(s):  
Wei-Lun Huang ◽  
Yen-Han Wang ◽  
Fu-Chung Kuo ◽  
Jia-Yush Yen ◽  
Fan-Chun Kuo ◽  
...  
2014 ◽  
Vol 492 ◽  
pp. 128-134
Author(s):  
Jun Hai Jiang ◽  
Guo Yun Ye ◽  
Yue Tong Xu

Because of its high dynamic response speed and acceleration, high rigidity and positioning accuracy, the permanent magnet linear synchronous motor (PMLSM) is able to meet the requirements of high-speed precision CNC machine tools. However, its thermal problems have seriously hampered its development. This paper establishes a PMLSM temperature field model, designs a cooling structure, determines the boundary conditions of the finite element model and conducts computer simulation of the model. The result shows that the designed cooling structure can effectively alleviate the motors thermal problems.


2013 ◽  
Vol 416-417 ◽  
pp. 270-275
Author(s):  
Xin Min Zhang ◽  
Chuan Ying Cheng ◽  
Qin Fen Lu ◽  
Yun Yue Ye ◽  
Xiao Sheng Tao

The permanent magnet linear synchronous motor (PMLSM) has a good application prospect due to many significant advantages such as high speed, high precision, high thrust force density, simple structure, energy saving and reliable operation etc., so the research and development are of great importance. This paper mainly focuses on the key design points of a double-sided water-cooled PMLSM. According to the required thrust force, the design is given out including the basic structure parameters, winding connection methods and water cooling system. Based on the erected finite-element model, the performances such as back-EMF, thrust force, normal force, power factor and efficiency are predicted. By comparing with a single-sided PMLSM with the same specifications, it is proved that this double-sided PMLSM has lower thrust force ripple and higher thrust force density. Moreover, the net normal force of its mover is almost zero. Finally, the predicted back-EMF is verified by measurement.


Mechatronics ◽  
2013 ◽  
Vol 23 (2) ◽  
pp. 172-181 ◽  
Author(s):  
Shi-Uk Chung ◽  
Ji-Won Kim ◽  
Byung-Chul Woo ◽  
Do-Kwan Hong ◽  
Ji-Young Lee ◽  
...  

Actuators ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 77
Author(s):  
Xuezhen Wang ◽  
Feixue Chen ◽  
RenFeng Zhu ◽  
Xiaolu Huang ◽  
Na Sang ◽  
...  

In high-end testing and manufacturing equipment, a trend exists whereby the traditional servo feed system with a ball screw and rotary motor will gradually be replaced by a direct drive system. The precision motion system driven by a permanent magnet linear synchronous motor (PMLSM) offers several advantages, including high speed, high acceleration, and high positioning accuracy. However, the operating precision of the feed device will be affected by the PMLSM robustness to nonlinear and uncertain disturbances, such as cogging force, friction, thermal effects, residual vibration, and load disturbance. The aim of this paper was to provide a survey on disturbance analysis and suppression approaches to improve the dynamic performance of PMLSM motion systems. First, the origin and inhibition methods of thrust ripple and friction are presented. Second, the mechanisms, modeling approaches, and mitigation measures of thermal effects are introduced. Additionally, the residual vibration characteristics and suppression methods are discussed. Finally, disturbance observers of periodic and aperiodic loads are introduced. These suppression methods from structural design and control compensation are then discussed in order to improve the dynamic response and steady-state accuracy of PMLSM.


2016 ◽  
Vol 52 (7) ◽  
pp. 1-4 ◽  
Author(s):  
Kyung-Hun Shin ◽  
Seung-Han Lee ◽  
Han-Wook Cho ◽  
Cheol-Hoon Park ◽  
Jang-Young Choi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document