Refolding and activation of recombinant N-carbamoyl-d-amino acid amidohydrolase from Escherichia coli inclusion bodies

2005 ◽  
Vol 40 (6) ◽  
pp. 2135-2141 ◽  
Author(s):  
Hsiu-Mei Chen ◽  
Kun-Ying Lin ◽  
Chi-Hung Lu
1999 ◽  
Vol 15 (4) ◽  
pp. 603-607 ◽  
Author(s):  
Y.-P. Chao ◽  
T.-Y. Juang ◽  
J.-T. Chern ◽  
C.-K. Lee

2007 ◽  
Vol 402 (3) ◽  
pp. 429-437 ◽  
Author(s):  
Shimin Jiang ◽  
Chunhong Li ◽  
Weiwen Zhang ◽  
Yuanheng Cai ◽  
Yunliu Yang ◽  
...  

One of the greatest bottlenecks in producing recombinant proteins in Escherichia coli is that over-expressed target proteins are mostly present in an insoluble form without any biological activity. DCase (N-carbamoyl-D-amino acid amidohydrolase) is an important enzyme involved in semi-synthesis of β-lactam antibiotics in industry. In the present study, in order to determine the amino acid sites responsible for solubility of DCase, error-prone PCR and DNA shuffling techniques were applied to randomly mutate its coding sequence, followed by an efficient screening based on structural complementation. Several mutants of DCase with reduced aggregation were isolated. Solubility tests of these and several other mutants generated by site-directed mutagenesis indicated that three amino acid residues of DCase (Ala18, Tyr30 and Lys34) are involved in its protein solubility. In silico structural modelling analyses suggest further that hydrophilicity and/or negative charge at these three residues may be responsible for the increased solubility of DCase proteins in E. coli. Based on this information, multiple engineering designated mutants were constructed by site-directed mutagenesis, among them a triple mutant A18T/Y30N/K34E (named DCase-M3) could be overexpressed in E. coli and up to 80% of it was soluble. DCase-M3 was purified to homogeneity and a comparative analysis with wild-type DCase demonstrated that DCase-M3 enzyme was similar to the native DCase in terms of its kinetic and thermodynamic properties. The present study provides new insights into recombinant protein solubility in E. coli.


1999 ◽  
Vol 87 (2) ◽  
pp. 149-154 ◽  
Author(s):  
Hirokazu Nanba ◽  
Yasuhiro Ikenaka ◽  
Yukio Yamada ◽  
Kazuyoshi Yajima ◽  
Masayuki Takano ◽  
...  

2020 ◽  
Vol 14 (4) ◽  
pp. 269-282
Author(s):  
Sadra S. Tehrani ◽  
Golnaz Goodarzi ◽  
Mohsen Naghizadeh ◽  
Seyyed H. Khatami ◽  
Ahmad Movahedpour ◽  
...  

Background: Granulocyte colony-stimulating factor (G-CSF) expressed in engineered Escherichia coli (E. coli) as a recombinant protein is utilized as an adjunct to chemotherapy for improving neutropenia. Recombinant proteins overexpression may lead to the creation of inclusion bodies whose recovery is a tedious and costly process. To overcome the problem of inclusion bodies, secretory production might be used. To achieve a mature secretory protein product, suitable signal peptide (SP) selection is a vital step. Objective: In the present study, we aimed at in silico evaluation of proper SPs for secretory production of recombinant G-CSF in E. coli. Methods: Signal peptide website and UniProt were used to collect the SPs and G-CSF sequences. Then, SignalP were utilized in order to predict the SPs and location of their cleavage site. Physicochemical features and solubility were investigated by ProtParam and Protein-sol tools. Fusion proteins sub-cellular localization was predicted by ProtCompB. Results: LPP, ELBP, TSH, HST3, ELBH, AIDA and PET were excluded according to SignalP. The highest aliphatic index belonged to OMPC, TORT and THIB and PPA. Also, the highest GRAVY belonged to OMPC, ELAP, TORT, BLAT, THIB, and PSPE. Furthermore, G-CSF fused with all SPs were predicted as soluble fusion proteins except three SPs. Finally, we found OMPT, OMPF, PHOE, LAMB, SAT, and OMPP can translocate G-CSF into extracellular space. Conclusion: Six SPs were suitable for translocating G-CSF into the extracellular media. Although growing data indicate that the bioinformatics approaches can improve the precision and accuracy of studies, further experimental investigations and recent patents explaining several inventions associated to the clinical aspects of SPs for secretory production of recombinant GCSF in E. coli are required for final validation.


1999 ◽  
Vol 64 (8) ◽  
pp. 1348-1356 ◽  
Author(s):  
Michaela Rumlová-Kliková ◽  
Iva Pichová ◽  
Eric Hunter ◽  
Tomáš Ruml

It has been generally accepted that inclusion bodies (IBs) formed in Escherichia coli consist of non-biologically active aggregated proteins, which are stabilized by non-productive interactions. We show here that bacterial expression of a retroviral capsid polyprotein results in formation of insoluble IBs that contain fully assembled viral particles connected with amorphous material. The efficiency of IBs formation and capsid assembly was not significantly affected by changes in induction temperature, pH of cultivation medium or the level of expression.


1988 ◽  
Vol 263 (28) ◽  
pp. 14276-14280 ◽  
Author(s):  
T Kawakami ◽  
Y Akizawa ◽  
T Ishikawa ◽  
T Shimamoto ◽  
M Tsuda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document