Membrane fouling control and sludge solubilization using high voltage impulse (HVI) electric fields

2014 ◽  
Vol 49 (5) ◽  
pp. 858-862 ◽  
Author(s):  
Ji-Sun Lee ◽  
In-Soung Chang
2013 ◽  
Vol 47 (11) ◽  
pp. 3827-3834 ◽  
Author(s):  
Darli Theint Myat ◽  
Max Mergen ◽  
Oliver Zhao ◽  
Matthew B. Stewart ◽  
John D. Orbell ◽  
...  

Membranes ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 369
Author(s):  
Shengji Xia ◽  
Xinran Zhang ◽  
Yuanchen Zhao ◽  
Fibor J. Tan ◽  
Pan Li ◽  
...  

The membrane separation process is being widely used in water treatment. It is very important to control membrane fouling in the process of water treatment. This study was conducted to evaluate the efficiency of a pre-oxidation-coagulation flat ceramic membrane filtration process using different oxidant types and dosages in water treatment and membrane fouling control. The results showed that under suitable concentration conditions, the effect on membrane fouling control of a NaClO pre-oxidation combined with a coagulation/ceramic membrane system was better than that of an O3 system. The oxidation process changed the structure of pollutants, reduced the pollution load and enhanced the coagulation process in a pre-oxidation-coagulation system as well. The influence of the oxidant on the filtration system was related to its oxidizability and other characteristics. NaClO and O3 performed more efficiently than KMnO4. NaClO was more conducive to the removal of DOC, and O3 was more conducive to the removal of UV254.


2021 ◽  
Vol 40 ◽  
pp. 101867
Author(s):  
Weonjung Sohn ◽  
Wenshan Guo ◽  
Huu Hao Ngo ◽  
Lijuan Deng ◽  
Dongle Cheng ◽  
...  

2017 ◽  
Vol 80 ◽  
pp. 464-471 ◽  
Author(s):  
Zhong Ma ◽  
Xiaolong Lu ◽  
Chunrui Wu ◽  
Chong Liu ◽  
Zhiyu Liu ◽  
...  

Author(s):  
Guangrong Sun ◽  
Chuanyi Zhang ◽  
Wei Li ◽  
Limei Yuan ◽  
Shilong He ◽  
...  

2021 ◽  
Vol 11 (4) ◽  
pp. 179-203
Author(s):  
Asaad Shemshadi ◽  
Pourya Khorampour

Facilities and buildings installed nearby high voltage equipment and electric field exposure is always a serious threat to the health of organisms and can have a significant impact on the functioning of sensitive and vital organs such as the heart and brain. Therefore, it is necessary to study the electromagnetic field value in these areas to control the intensity and restrict the induced value regarding to international recommendations. In this paper, the effects of 230KV transmission line electric fields on the environment are examined by proper FEM software.The model under consideration in this project is a four story building adjacent to the 230KV transmission line.At first, the distance between the building and high voltage transmission lines and its relationship to the intensity of the electric field is examined, and then the intensity of the electric field is compared to the standards of the International Commission on Non Ionizing Radiation Protection (ICNIRP). To continue, in places where the electric field exceeds the standard level value, solutions to reduce the intensity of the electric field to the tolerable value have been proposed.The first solution is to use a metal shield around the building as a Faraday cage, which weakens the potential for electric field value by creating an enclosed surface, the reduction rate is 4700%,both complete cage shape and incomplete cage shapes are considered in this study which reduces the exposure value to 62.5% of its initial value. The second approach to reducing the electric field is to use protective conductor paints against electromagnetic fields. In the following study, the effect of using trees as a barrier against electromagnetic radiation will be examined. Finally, the three proposed solutions are compared in terms of environmental constraints, economic justification, and the reduction in electric field value.


Sign in / Sign up

Export Citation Format

Share Document