The combination effect of preozonation and CNTs layer modification on low-pressure membrane fouling control in treating NOM and EfOM

2021 ◽  
pp. 119225
Author(s):  
Jin Guo ◽  
Xuedong Zhu ◽  
Qingshan Wang ◽  
Weiyan Liu ◽  
Yu Wang
2016 ◽  
Vol 21 (2) ◽  
pp. 109-120 ◽  
Author(s):  
Samuel Gyebi Arhin ◽  
Noble Banadda ◽  
Allan John Komakech ◽  
Isa Kabenge ◽  
Joshua Wanyama

2013 ◽  
Vol 47 (11) ◽  
pp. 3827-3834 ◽  
Author(s):  
Darli Theint Myat ◽  
Max Mergen ◽  
Oliver Zhao ◽  
Matthew B. Stewart ◽  
John D. Orbell ◽  
...  

Membranes ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 369
Author(s):  
Shengji Xia ◽  
Xinran Zhang ◽  
Yuanchen Zhao ◽  
Fibor J. Tan ◽  
Pan Li ◽  
...  

The membrane separation process is being widely used in water treatment. It is very important to control membrane fouling in the process of water treatment. This study was conducted to evaluate the efficiency of a pre-oxidation-coagulation flat ceramic membrane filtration process using different oxidant types and dosages in water treatment and membrane fouling control. The results showed that under suitable concentration conditions, the effect on membrane fouling control of a NaClO pre-oxidation combined with a coagulation/ceramic membrane system was better than that of an O3 system. The oxidation process changed the structure of pollutants, reduced the pollution load and enhanced the coagulation process in a pre-oxidation-coagulation system as well. The influence of the oxidant on the filtration system was related to its oxidizability and other characteristics. NaClO and O3 performed more efficiently than KMnO4. NaClO was more conducive to the removal of DOC, and O3 was more conducive to the removal of UV254.


2021 ◽  
Vol 40 ◽  
pp. 101867
Author(s):  
Weonjung Sohn ◽  
Wenshan Guo ◽  
Huu Hao Ngo ◽  
Lijuan Deng ◽  
Dongle Cheng ◽  
...  

2017 ◽  
Vol 80 ◽  
pp. 464-471 ◽  
Author(s):  
Zhong Ma ◽  
Xiaolong Lu ◽  
Chunrui Wu ◽  
Chong Liu ◽  
Zhiyu Liu ◽  
...  

Author(s):  
Guangrong Sun ◽  
Chuanyi Zhang ◽  
Wei Li ◽  
Limei Yuan ◽  
Shilong He ◽  
...  

2019 ◽  
Vol 41 (5) ◽  
pp. 272-277 ◽  
Author(s):  
Ji Sook Kim ◽  
Young Long Kuk ◽  
Jung Yeon Park ◽  
You Jung Jang ◽  
Chul hwi Park

Membranes ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 78
Author(s):  
Bin Liu ◽  
Meng Wang ◽  
Kaihan Yang ◽  
Guangchao Li ◽  
Zhou Shi

In order to alleviate membrane fouling and improve removal efficiency, a series of pretreatment technologies were applied to the ultrafiltration process. In this study, ClO2 was used as a pre-oxidation strategy for the ultrafiltration (UF) process. Humic acid (HA), sodium alginate (SA), and bovine serum albumin (BSA) were used as three typical organic model foulants, and the mixture of the three substances was used as a representation of simulated natural water. The dosages of ClO2 were 0.5, 1, 2, 4, and 8 mg/L, with 90 min pre-oxidation. The results showed that ClO2 pre-oxidation at low doses (1–2 mg/L) could alleviate the membrane flux decline caused by humus, polysaccharides, and simulated natural water, but had a limited alleviating effect on the irreversible resistance of the membrane. The interfacial free energy analysis showed that the interaction force between the membrane and the simulated natural water was also repulsive after the pre-oxidation, indicating that ClO2 pre-oxidation was an effective way to alleviate cake layer fouling by reducing the interaction between the foulant and the membrane. In addition, ClO2 oxidation activated the hidden functional groups in the raw water, resulting in an increase in the fluorescence value of humic analogs, but had a good removal effect on the fluorescence intensity of BSA. Furthermore, the membrane fouling fitting model showed that ClO2, at a low dose (1 mg/L), could change the mechanism of membrane fouling induced by simulated natural water from standard blocking and cake layer blocking to critical blocking. Overall, ClO2 pre-oxidation was an efficient pretreatment strategy for UF membrane fouling alleviation, especially for the fouling control of HA and SA at low dosages.


2009 ◽  
Vol 3 (1) ◽  
pp. 8-16 ◽  
Author(s):  
Jian-Jun Qin ◽  
Boris Liberman ◽  
Kiran A. Kekre ◽  
Ado Gossan

Reverse osmosis (RO) has been widely applied in various water and wastewater treatment processes as a promising membrane technology. However, RO membrane fouling is a global issue, which limits it operating flux, decreases water production, increases power consumption and requires periodical membranes Cleaning-in-Place (CIP) procedure. This may result in low effectiveness, high cost and adds environmental issues related to the CIP solutions disposal. Forward osmosis (FO) or direct osmosis (DO) is the transport of water across a semi-permeable membrane from higher water chemical potential side to lower water chemical potential side, which phenomenon was observed in 1748. The engineered applications of FO/DO in membrane separation processes have been developed in food processing, wastewater treatment and seawater/brackish water desalination. In recent years, DO has been increasingly attractive for RO fouling control as it is highly efficient and environmentally friendly technique which is a new backwash technique via interval DO by intermittent injection of the high salinity solution without stoppage of high pressure pump or interruption of the operational process and allows keeping RO membrane continuously clean even in heavy bio-fouling conditions and operating RO membranes at high flux. This paper provides the state-of-the-art of the physical principles and applications of DO for RO fouling control as well as its strengths and limitations.


Sign in / Sign up

Export Citation Format

Share Document