Numerical estimation of the thrust performance on a rotating detonation engine for a hydrogen–oxygen mixture

2015 ◽  
Vol 35 (2) ◽  
pp. 2005-2013 ◽  
Author(s):  
Nobuyuki Tsuboi ◽  
Yusuke Watanabe ◽  
Takayuki Kojima ◽  
A. Koichi Hayashi
Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1381
Author(s):  
Hyung-Seok Han ◽  
Eun Sung Lee ◽  
Jeong-Yeol Choi

A small rotating detonation engine (RDE) model and the corresponding experimental setup were constructed for the experimental investigation of the detonation propagation characteristics and thrust performance of a circular RDE. Experiments were conducted at a range of 0.3–2.5 equivalence ratio with a total mass flow rate of less than 180.0 g/s using a C2H4/O2 mixture. Irregularly unstable detonative combustion occurs immediately after the detonation initiation, which includes initiation, propagation, decaying, and the merging of detonation waves. Following this, periodically unsteady detonative combustion occurs in the circular channel, resulting in the stable operation of the RDE. During stable operation, two detonation waves are predominant, rotating along the wall at a speed lower than the Chapman–Jouguet (CJ) detonation speed. The characteristic velocity efficiency is approximately 73% on average. The low characteristic velocity efficiency is presumed to be caused by the unoptimized combustion channel and the poor mixing efficiency owing to the two-dimensional injector configuration. The effect of the RDE component design and the RDE flow field characteristics need to be further investigated for improving the performance of the RDE.


2017 ◽  
Vol 33 (1) ◽  
pp. 100-111 ◽  
Author(s):  
Nobuyuki Tsuboi ◽  
Seiichiro Eto ◽  
A. Koichi Hayashi ◽  
Takayuki Kojima

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Michal Folusiak ◽  
Karol Swiderski ◽  
Piotr Wolański

AbstractThe idea of using the phenomenon of rotating detonation to propulsion has its roots in fifties of the last century in works of Adamson et al. and Nicholls et al. at the University of Michigan. The idea was recently reinvented and experimental research and numerical simulations on the Rotating Detonation Engine (RDE) are carried in numerous institutions worldwide, in Poland at Warsaw University of Technology (WUT) since 2004. Over the period 2010-2014 WUT and Institute of Aviation (IOA) jointly implemented the project under the Innovative Economy Operational Programme entitled ‘Turbine engine with detonation combustion chamber’. The goal of the project was to replace the combustion chamber of turboshaft engine GTD-350 with the annular detonation chamber.This paper is focused on investigation of the influence of a geometry and flow conditions on the structure and propagation stability of the rotating detonation wave. Presented results are in majority an outcome of the aforementioned programme, in particular authors’ works on the development of the in-house code REFLOPS USG and its application to simulation of the rotating detonation propagation in the RDE.


2021 ◽  
Author(s):  
Keisuke Goto ◽  
Kosei Ota ◽  
Akira Kawasaki ◽  
Hiroaki Watanabe ◽  
Nobotu Itouyama ◽  
...  

2021 ◽  
Author(s):  
Toshiharu Mizukaki ◽  
Fumihiko Iwasaki ◽  
Makoto Kojima ◽  
Hideto Kawashima ◽  
Shingo Matsuyama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document