characteristic velocity
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 16)

H-INDEX

10
(FIVE YEARS 1)

Mathematics ◽  
2021 ◽  
Vol 9 (20) ◽  
pp. 2609
Author(s):  
Jiří Dostál ◽  
Vladimír Havlena

We present a finite volume method formulated on a mixed Eulerian-Lagrangian mesh for highly advective 1D hyperbolic systems altogether with its application to plug-flow heat exchanger modeling/simulation. Advection of sharp moving fronts is an important problem in fluid dynamics, and even a simple transport equation cannot be solved precisely by having a finite number of nodes/elements/volumes. Finite volume methods are known to introduce numerical diffusion, and there exist a wide variety of schemes to minimize its occurrence; the most recent being adaptive grid methods such as moving mesh methods or adaptive mesh refinement methods. We present a solution method for a class of hyperbolic systems with one nonzero time-dependent characteristic velocity. This property allows us to rigorously define a finite volume method on a grid that is continuously moving by the characteristic velocity (Lagrangian grid) along a static Eulerian grid. The advective flux of the flowing field is, by this approach, removed from cell-to-cell interactions , and the ability to advect sharp fronts is therefore enhanced. The price to pay is a fixed velocity-dependent time sampling and a time delay in the solution. For these reasons, the method is best suited for systems with a dominating advection component. We illustrate the method’s properties on an illustrative advection-decay equation example and a 1D plug flow heat exchanger. Such heat exchanger model can then serve as a convection-accurate dynamic model in estimation and control algorithms for which it was developed.


Aviation ◽  
2021 ◽  
Vol 25 (2) ◽  
pp. 73-78
Author(s):  
Aleksandrs Urbahs ◽  
Sergey Kravchenko ◽  
Margarita Urbaha ◽  
Kristine Carjova ◽  
Natalja Panova ◽  
...  

The paper presents the air-launch system enabling the delivery of small satellites into low Earth orbit. One of the most important advantages of the concept is its cost. Generally, the paper proves that launching a carrier from an aerial platform (a movable launch pad) provides the whole range of competitive advantages. In particular, the total losses during the launch from an aerial platform will reduce by 20–35%, and the characteristic velocity of the maneuver will reduce by 4–7%.


2021 ◽  
Vol 3 (7 (111)) ◽  
pp. 51-58
Author(s):  
Gennadiy Filimonikhin ◽  
Vladimir Pirogov ◽  
Maksim Hodunko ◽  
Ruslan Kisilov ◽  
Vitalii Mazhara

This paper reports a study into the dynamics of a vibratory machine composed of a viscoelastically-fixed platform that can move vertically and two identical inertial vibration exciters. The vibration exciters' bodies rotate at the same angular velocities in opposite directions. The bodies host a single load in the form of a ball, roller, or pendulum. The loads' centers of mass can move relative to the bodies in a circle with a center on the axis of rotation. The loads' relative movements are hindered by the forces of viscous resistance. It was established that a vibratory machine theoretically possesses the following: – one to three oscillatory modes of movement under which loads get stuck at almost constant angular velocity and generate total unbalanced mass in the vertical direction only; – a no-oscillation mode under which loads rotate synchronously with the bodies and generate total unbalanced mass in the horizontal direction only. At the same time, only one oscillatory mode is resonant and exists at the above-the-resonance speeds of body rotation, lower than some characteristic speed. At the bodies' rotation speeds: ‒ pre-resonant; there is a globally asymptotically stable (the only existing) mode of load jams; ‒ above-the-resonance, lower than the characteristic velocity; there are locally asymptotically stable regimes ‒ both the resonance mode of movement of a vibratory machine and a no-oscillations mode; ‒ exceeding the characteristic velocity: there is a globally asymptotically stable no-oscillations mode. Computational experiments have confirmed the results of theoretical research. At the same time, it was additionally established that it would suffice, to enter a resonant mode of movement, to slowly accelerate the bodies of vibration exciters to the above-the-resonance speed, less than the characteristic speed. The results reported here could be interesting both for the theory and practice of designing new vibratory machines


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2828
Author(s):  
Shinjae Kang ◽  
Sejin Kwon

Spacecraft have monopropellant thruster systems for attitude control in the vacuum of space. Hydroxylamine nitrate is a green propellant that has high performance and low toxicity. Owing to the high adiabatic decomposition temperature of the hydroxylamine nitrate propellant, it is necessary to develop a catalyst with high thermal stability. We used a platinum barium hexaaluminate catalyst for green propellant hydroxylamine nitrate thrusters. Barium hexaaluminate support was prepared by a wet impregnation method and heat treatment. Platinum, the active material, was coated on catalyst supports. The Brunauer–Emmett–Teller specific surface was also investigated. X-ray diffraction and scanning electron microscope imagery were used to confirm the formation of barium hexaaluminate. A hydroxylamine nitrate propellant blended with methanol was used for performance evaluation via firing tests of the thruster. The catalytic decomposition performance of each test was evaluated by calculating the characteristic velocity efficiency using the pressure of the chamber at the end of the catalyst bed and the mass flow rate of the propellant. As the catalyst bed was preheated to 350 °C, the characteristic velocity efficiency was 71.9%. Test results revealed that the platinum barium hexaaluminate catalyst is feasible for a hydroxylamine nitrate thruster.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1381
Author(s):  
Hyung-Seok Han ◽  
Eun Sung Lee ◽  
Jeong-Yeol Choi

A small rotating detonation engine (RDE) model and the corresponding experimental setup were constructed for the experimental investigation of the detonation propagation characteristics and thrust performance of a circular RDE. Experiments were conducted at a range of 0.3–2.5 equivalence ratio with a total mass flow rate of less than 180.0 g/s using a C2H4/O2 mixture. Irregularly unstable detonative combustion occurs immediately after the detonation initiation, which includes initiation, propagation, decaying, and the merging of detonation waves. Following this, periodically unsteady detonative combustion occurs in the circular channel, resulting in the stable operation of the RDE. During stable operation, two detonation waves are predominant, rotating along the wall at a speed lower than the Chapman–Jouguet (CJ) detonation speed. The characteristic velocity efficiency is approximately 73% on average. The low characteristic velocity efficiency is presumed to be caused by the unoptimized combustion channel and the poor mixing efficiency owing to the two-dimensional injector configuration. The effect of the RDE component design and the RDE flow field characteristics need to be further investigated for improving the performance of the RDE.


Sign in / Sign up

Export Citation Format

Share Document