scholarly journals Controlled Dy-doping to nickel-rich cathode materials in high temperature aerosol synthesis

Author(s):  
Chao Yan ◽  
Xiaofang Yang ◽  
Hao Zhao ◽  
Hongtao Zhong ◽  
Guoming Ma ◽  
...  
2019 ◽  
Vol 944 ◽  
pp. 1179-1186 ◽  
Author(s):  
Yue Hua Wang ◽  
Li Wen Ma ◽  
Yun He Zhang ◽  
Zhao Jie Huang ◽  
Xiao Li Xi

With the development of new energy vehicles, urgent issues have attracted considerable attention. Some power batteries have entered the scrapping period, with the imperative recycling of used power batteries. Some studies have predicted that by 2020, the amount of power lithium battery scrap will reach 32.2 GWh, corresponding to ~500,000 tons, and by 2023, the scrap will reach 101 GWh, corresponding to ~1.16 million tons. In this study, nickel-cobalt-lithium LiNi0.7Co0.3O2cathode materials are regenerated from spent lithium-ion battery cathode materials as the raw material, which not only aids in the reduction of pressure on the environment but also leads to the recycling of resources. First, extraction is employed using extracting agent p204 to remove aluminum ions from an acid leaching solution. Extraction conditions for aluminum ions are: include a phase ratio of 1:2,a pH of 3, an extractant concentration of 30%, and a saponification rate of 70%.Next, the precursor was prepared by co-precipitation using sodium hydroxide and ammonia water as the precipitant and complexion agents, respectively; hence, the cathode material can be uniformly mixed at the atomic level. The precursor and lithium hydroxide were subjected to calcination at high temperature using a high-temperature solid-phase method. The Calcination conditions include an air atmosphere ; a calcination temperature of 800° °C ; a calcination time of 15 h, an n (precursor): n (lithium hydroxide) ratio of 1:1.1.The Thermogravimetric analysis revealed that the synthesis temperature should not exceed 850°C. X-ray diffraction analysis, scanning electron microscopy, and energy spectrum analysis of the cathode material revealed a composition comprising Li, Ni, and Co oxides. After analysis, the material obtained is lithium nickel-cobalt-oxide, LiNi0.7Co0.3O2, which is a positive electrode material with good crystallinity and a regular layered structure.


2019 ◽  
Vol 943 ◽  
pp. 141-148 ◽  
Author(s):  
Xiao Tong Jiang ◽  
Pan Wang ◽  
Long Hui Li ◽  
Jia Yu ◽  
Yu Xin Yin ◽  
...  

The cathode materials of LiFePO4 batteries decreases due to the gradual loss of lithium content during use. In this paper, the spent cathode materials were recycled with a carbon layer coated. The samples were prepared by a high temperature impurity removal procession and a solid phase repairing method. The LiFePO4 material obtained by the regeneration process has a discharge specific capacity of 105.4 mAh/g at 0.1 C after 10 cycles, and keeps it a considerable retention of 73.1 mAh/g at 1 C. This work provides a new routine in reusing lithium ion batteries.


2015 ◽  
Vol 355 ◽  
pp. 1272-1278 ◽  
Author(s):  
Wei-Yu Chou ◽  
Yi-Chun Jin ◽  
Jenq-Gong Duh ◽  
Cheng-Zhang Lu ◽  
Shih-Chieh Liao

RSC Advances ◽  
2017 ◽  
Vol 7 (22) ◽  
pp. 13595-13603 ◽  
Author(s):  
Xiqing Yuan ◽  
Bingchuan Liu ◽  
Jingyi Xu ◽  
Xiaorong Yang ◽  
Kemal Zeinu ◽  
...  

Mesoporous lamellar carbon was produced by direct high temperature carbonization of bagasse, a novel process designed with affordable cost and ease of production for scale-up manufacturing of Li–S batteries.


2017 ◽  
Vol 5 (17) ◽  
pp. 7952-7960 ◽  
Author(s):  
Jianlong Li ◽  
Mingwu Xiang ◽  
Yan Wang ◽  
Jinhua Wu ◽  
Hang Zhao ◽  
...  

A facile co-precipitation approach combined with spray-drying and high-temperature calcinations was developed to synthesize LiMn0.8Fe0.2PO4/C microspheres on a large scale.


CrystEngComm ◽  
2016 ◽  
Vol 18 (39) ◽  
pp. 7463-7470 ◽  
Author(s):  
Kyu-Young Park ◽  
Hyungsub Kim ◽  
Seongsu Lee ◽  
Jongsoon Kim ◽  
Jihyun Hong ◽  
...  

In this paper, the structural evolution of Li(Mn1/3Fe1/3Co1/3)PO4, which is a promising multi-component olivine cathode materials, is investigated using combined in situ high-temperature X-ray diffraction and flux neutron diffraction analyses at various states of charge.


2019 ◽  
Vol 2 (2) ◽  
pp. 1319-1329 ◽  
Author(s):  
Christopher Abram ◽  
Jingning Shan ◽  
Xiaofang Yang ◽  
Chao Yan ◽  
Daniel Steingart ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document