scholarly journals A case based reasoning based multi-agent system for the reactive container stacking in seaport terminals

2017 ◽  
Vol 108 ◽  
pp. 927-936 ◽  
Author(s):  
Ines Rekik ◽  
Sabeur Elkosantini ◽  
Habib Chabchoub
Author(s):  
Javier Bajo ◽  
Dante I. Tapia ◽  
Sara Rodríguez ◽  
Juan M. Corchado

Agents and Multi-Agent Systems (MAS) have become increasingly relevant for developing distributed and dynamic intelligent environments. The ability of software agents to act somewhat autonomously links them with living animals and humans, so they seem appropriate for discussion under nature-inspired computing (Marrow, 2000). This paper presents AGALZ (Autonomous aGent for monitoring ALZheimer patients), and explains how this deliberative planning agent has been designed and implemented. A case study is then presented, with AGALZ working with complementary agents into a prototype environment-aware multi-agent system (ALZ-MAS: ALZheimer Multi-Agent System) (Bajo, Tapia, De Luis, Rodríguez & Corchado, 2007). The elderly health care problem is studied, and the possibilities of Radio Frequency Identification (RFID) (Sokymat, 2006) as a technology for constructing an intelligent environment and ascertaining patient location to generate plans and maximize safety are examined. This paper focuses in the development of natureinspired deliberative agents using a Case-Based Reasoning (CBR) (Aamodt & Plaza, 1994) architecture, as a way to implement sensitive and adaptive systems to improve assistance and health care support for elderly and people with disabilities, in particular with Alzheimer. Agents in this context must be able to respond to events, take the initiative according to their goals, communicate with other agents, interact with users, and make use of past experiences to find the best plans to achieve goals, so we propose the development of an autonomous deliberative agent that incorporates a Case-Based Planning (CBP) mechanism, derivative from Case-Based Reasoning (CBR) (Bajo, Corchado & Castillo, 2006), specially designed for planning construction. CBP-BDI facilitates learning and adaptation, and therefore a greater degree of autonomy than that found in pure BDI (Believe, Desire, Intention) architecture (Bratman, 1987). BDI agents can be implemented by using different tools, such as Jadex (Pokahr, Braubach & Lamersdorf, 2003), dealing with the concepts of beliefs, goals and plans, as java objects that can be created and handled within the agent at execution time.


2017 ◽  
Vol 11 (3/4) ◽  
pp. 238 ◽  
Author(s):  
Nassima Aissani ◽  
Islam Hadj Mohamed Guetarni ◽  
Soraya Zebirate

2011 ◽  
Vol 21 (04) ◽  
pp. 277-296 ◽  
Author(s):  
M. LOURDES BORRAJO ◽  
BRUNO BARUQUE ◽  
EMILIO CORCHADO ◽  
JAVIER BAJO ◽  
JUAN M. CORCHADO

During the last years there has been a growing need of developing innovative tools that can help small to medium sized enterprises to predict business failure as well as financial crisis. In this study we present a novel hybrid intelligent system aimed at monitoring the modus operandi of the companies and predicting possible failures. This system is implemented by means of a neural-based multi-agent system that models the different actors of the companies as agents. The core of the multi-agent system is a type of agent that incorporates a case-based reasoning system and automates the business control process and failure prediction. The stages of the case-based reasoning system are implemented by means of web services: the retrieval stage uses an innovative weighted voting summarization of self-organizing maps ensembles-based method and the reuse stage is implemented by means of a radial basis function neural network. An initial prototype was developed and the results obtained related to small and medium enterprises in a real scenario are presented.


Sign in / Sign up

Export Citation Format

Share Document