scholarly journals An incremental approach to update influential nodes in dynamic social networks

2020 ◽  
Vol 176 ◽  
pp. 781-790
Author(s):  
Nesrine Hafiene ◽  
Wafa Karoui ◽  
Lotfi Ben Romdhane
2019 ◽  
Vol 5 (2) ◽  
pp. 223-237 ◽  
Author(s):  
Weihua Li ◽  
Quan Bai ◽  
Minjie Zhang

2016 ◽  
Vol 30 (16) ◽  
pp. 1650092 ◽  
Author(s):  
Tingting Wang ◽  
Weidi Dai ◽  
Pengfei Jiao ◽  
Wenjun Wang

Many real-world data can be represented as dynamic networks which are the evolutionary networks with timestamps. Analyzing dynamic attributes is important to understanding the structures and functions of these complex networks. Especially, studying the influential nodes is significant to exploring and analyzing networks. In this paper, we propose a method to identify influential nodes in dynamic social networks based on identifying such nodes in the temporal communities which make up the dynamic networks. Firstly, we detect the community structures of all the snapshot networks based on the degree-corrected stochastic block model (DCBM). After getting the community structures, we capture the evolution of every community in the dynamic network by the extended Jaccard’s coefficient which is defined to map communities among all the snapshot networks. Then we obtain the initial influential nodes of the dynamic network and aggregate them based on three widely used centrality metrics. Experiments on real-world and synthetic datasets demonstrate that our method can identify influential nodes in dynamic networks accurately, at the same time, we also find some interesting phenomena and conclusions for those that have been validated in complex network or social science.


2020 ◽  
Vol 159 ◽  
pp. 113642 ◽  
Author(s):  
Nesrine Hafiene ◽  
Wafa Karoui ◽  
Lotfi Ben Romdhane

2021 ◽  
Vol 1818 (1) ◽  
pp. 012177
Author(s):  
Zainab Naseem Attuah ◽  
Firas Sabar Miften ◽  
Evan Abdulkareem Huzan

Sign in / Sign up

Export Citation Format

Share Document