stochastic block model
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 73)

H-INDEX

13
(FIVE YEARS 3)

2021 ◽  
Vol 12 ◽  
Author(s):  
Carter Allen ◽  
Brittany N. Kuhn ◽  
Nazzareno Cannella ◽  
Ayteria D. Crow ◽  
Analyse T. Roberts ◽  
...  

Opioid use disorder is a psychological condition that affects over 200,000 people per year in the U.S., causing the Centers for Disease Control and Prevention to label the crisis as a rapidly spreading public health epidemic. The behavioral relationship between opioid exposure and development of opioid use disorder (OUD) varies greatly between individuals, implying existence of sup-populations with varying degrees of opioid vulnerability. However, effective pre-clinical identification of these sub-populations remains challenging due to the complex multivariate measurements employed in animal models of OUD. In this study, we propose a novel non-linear network-based data analysis workflow that employs seven behavioral traits to identify opioid use sub-populations and assesses contributions of behavioral variables to opioid vulnerability and resiliency. Through this analysis workflow we determined how behavioral variables across heroin taking, refraining and seeking interact with one another to identify potentially heroin resilient and vulnerable behavioral sub-populations. Data were collected from over 400 heterogeneous stock rats in two geographically distinct locations. Rats underwent heroin self-administration training, followed by a progressive ratio and heroin-primed reinstatement test. Next, rats underwent extinction training and a cue-induced reinstatement test. To enter the analysis workflow, we integrated data from different cohorts of rats and removed possible batch effects. We then constructed a rat-rat similarity network based on their behavioral patterns and implemented community detection on this similarity network using a Bayesian degree-corrected stochastic block model to uncover sub-populations of rats with differing levels of opioid vulnerability. We identified three statistically distinct clusters corresponding to distinct behavioral sub-populations, vulnerable, resilient and intermediate for heroin use, refraining and seeking. We implement this analysis workflow as an open source R package, named mlsbm.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2060
Author(s):  
Xiaofeng Zhao ◽  
Wei Zhao ◽  
Mingao Yuan

In network data mining, community detection refers to the problem of partitioning the nodes of a network into clusters (communities). This is equivalent to identifying the cluster label of each node. A label estimator is said to be an exact recovery of the true labels (communities) if it coincides with the true labels with a probability convergent to one. In this work, we consider the effect of label information on the exact recovery of communities in an m-uniform Hypergraph Stochastic Block Model (HSBM). We investigate two scenarios of label information: (1) a noisy label for each node is observed independently, with 1−αn as the probability that the noisy label will match the true label; (2) the true label of each node is observed independently, with the probability of 1−αn. We derive sharp boundaries for exact recovery under both scenarios from an information-theoretical point of view. The label information improves the sharp detection boundary if and only if αn=n−β+o(1) for a constant β>0.


Author(s):  
Tin Lok James Ng ◽  
Thomas Brendan Murphy

AbstractWe propose a weighted stochastic block model (WSBM) which extends the stochastic block model to the important case in which edges are weighted. We address the parameter estimation of the WSBM by use of maximum likelihood and variational approaches, and establish the consistency of these estimators. The problem of choosing the number of classes in a WSBM is addressed. The proposed model is applied to simulated data and an illustrative data set.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abeer A. Zaki ◽  
Nesma A. Saleh ◽  
Mahmoud A. Mahmoud

PurposeThis study aims to assess the effect of updating the Phase I data – to enhance the parameters' estimates – on the control charts' detection power designed to monitor social networks.Design/methodology/approachA dynamic version of the degree corrected stochastic block model (DCSBM) is used to model the network. Both the Shewhart and exponentially weighted moving average (EWMA) control charts are used to monitor the model parameters. A performance comparison is conducted for each chart when designed using both fixed and moving windows of networks.FindingsOur results show that continuously updating the parameters' estimates during the monitoring phase delays the Shewhart chart's detection of networks' anomalies; as compared to the fixed window approach. While the EWMA chart performance is either indifferent or worse, based on the updating technique, as compared to the fixed window approach. Generally, the EWMA chart performs uniformly better than the Shewhart chart for all shift sizes. We recommend the use of the EWMA chart when monitoring networks modeled with the DCSBM, with sufficiently small to moderate fixed window size to estimate the unknown model parameters.Originality/valueThis study shows that the excessive recommendations in literature regarding the continuous updating of Phase I data during the monitoring phase to enhance the control chart performance cannot generally be extended to social network monitoring; especially when using the DCSBM. That is to say, the effect of continuously updating the parameters' estimates highly depends on the nature of the process being monitored.


Sign in / Sign up

Export Citation Format

Share Document