Identifying influential nodes in dynamic social networks based on degree-corrected stochastic block model

2016 ◽  
Vol 30 (16) ◽  
pp. 1650092 ◽  
Author(s):  
Tingting Wang ◽  
Weidi Dai ◽  
Pengfei Jiao ◽  
Wenjun Wang

Many real-world data can be represented as dynamic networks which are the evolutionary networks with timestamps. Analyzing dynamic attributes is important to understanding the structures and functions of these complex networks. Especially, studying the influential nodes is significant to exploring and analyzing networks. In this paper, we propose a method to identify influential nodes in dynamic social networks based on identifying such nodes in the temporal communities which make up the dynamic networks. Firstly, we detect the community structures of all the snapshot networks based on the degree-corrected stochastic block model (DCBM). After getting the community structures, we capture the evolution of every community in the dynamic network by the extended Jaccard’s coefficient which is defined to map communities among all the snapshot networks. Then we obtain the initial influential nodes of the dynamic network and aggregate them based on three widely used centrality metrics. Experiments on real-world and synthetic datasets demonstrate that our method can identify influential nodes in dynamic networks accurately, at the same time, we also find some interesting phenomena and conclusions for those that have been validated in complex network or social science.

Data Mining ◽  
2013 ◽  
pp. 719-733
Author(s):  
Céline Robardet

Social network analysis studies relationships between individuals and aims at identifying interesting substructures such as communities. This type of network structure is intuitively defined as a subset of nodes more densely linked, when compared with the rest of the network. Such dense subgraphs gather individuals sharing similar property depending on the type of relation encoded in the graph. In this chapter we tackle the problem of identifying communities in dynamic networks where relationships among entities evolve over time. Meaningful patterns in such structured data must capture the strong interactions between individuals but also their temporal relationships. We propose a pattern discovery method to identify evolving patterns defined by constraints. In this paradigm, constraints are parameterized by the user to drive the discovery process towards potentially interesting patterns, with the positive side effect of achieving a more efficient computation. In the proposed approach, dense and isolated subgraphs, defined by two user-parameterized constraints, are first computed in the dynamic network restricted at a given time stamp. Second, the temporal evolution of such patterns is captured by associating a temporal event types to each subgraph. We consider five basic temporal events: the formation, dissolution, growth, diminution and stability of subgraphs from one time stamp to the next one. We propose an algorithm that finds such subgraphs in a time series of graphs processed incrementally. The extraction is feasible thanks to efficient pruning patterns strategies. Experimental results on real-world data confirm the practical feasibility of our approach. We evaluate the added-value of the method, both in terms of the relevancy of the extracted evolving patterns and in terms of scalability, on two dynamic sensor networks and on a dynamic mobility network.


Author(s):  
Céline Robardet

Social network analysis studies relationships between individuals and aims at identifying interesting substructures such as communities. This type of network structure is intuitively defined as a subset of nodes more densely linked, when compared with the rest of the network. Such dense subgraphs gather individuals sharing similar property depending on the type of relation encoded in the graph. In this chapter we tackle the problem of identifying communities in dynamic networks where relationships among entities evolve over time. Meaningful patterns in such structured data must capture the strong interactions between individuals but also their temporal relationships. We propose a pattern discovery method to identify evolving patterns defined by constraints. In this paradigm, constraints are parameterized by the user to drive the discovery process towards potentially interesting patterns, with the positive side effect of achieving a more efficient computation. In the proposed approach, dense and isolated subgraphs, defined by two user-parameterized constraints, are first computed in the dynamic network restricted at a given time stamp. Second, the temporal evolution of such patterns is captured by associating a temporal event types to each subgraph. We consider five basic temporal events: the formation, dissolution, growth, diminution and stability of subgraphs from one time stamp to the next one. We propose an algorithm that finds such subgraphs in a time series of graphs processed incrementally. The extraction is feasible thanks to efficient pruning patterns strategies. Experimental results on real-world data confirm the practical feasibility of our approach. We evaluate the added-value of the method, both in terms of the relevancy of the extracted evolving patterns and in terms of scalability, on two dynamic sensor networks and on a dynamic mobility network.


Author(s):  
Yingzi Jin ◽  
Yutaka Matsuo

Previous chapters focused on the models of static networks, which consider a relational network at a given point in time. However, real-world social networks are dynamic in nature; for example, friends of friends become friends. Social network research has, in recent years, paid increasing attention to dynamic and longitudinal network analysis in order to understand network evolution, belief formation, friendship formation, and so on. This chapter focuses mainly on the dynamics and evolutional patterns of social networks. The chapter introduces real-world applications and reviews major theories and models of dynamic network mining.


2020 ◽  
Vol 176 ◽  
pp. 781-790
Author(s):  
Nesrine Hafiene ◽  
Wafa Karoui ◽  
Lotfi Ben Romdhane

2011 ◽  
Vol 30 (3) ◽  
pp. 1061-1070 ◽  
Author(s):  
Khairi Reda ◽  
Chayant Tantipathananandh ◽  
Andrew Johnson ◽  
Jason Leigh ◽  
Tanya Berger-Wolf

2014 ◽  
Vol 2014 ◽  
pp. 1-22 ◽  
Author(s):  
Jingjing Ma ◽  
Jie Liu ◽  
Wenping Ma ◽  
Maoguo Gong ◽  
Licheng Jiao

Community structure is one of the most important properties in social networks. In dynamic networks, there are two conflicting criteria that need to be considered. One is the snapshot quality, which evaluates the quality of the community partitions at the current time step. The other is the temporal cost, which evaluates the difference between communities at different time steps. In this paper, we propose a decomposition-based multiobjective community detection algorithm to simultaneously optimize these two objectives to reveal community structure and its evolution in dynamic networks. It employs the framework of multiobjective evolutionary algorithm based on decomposition to simultaneously optimize the modularity and normalized mutual information, which quantitatively measure the quality of the community partitions and temporal cost, respectively. A local search strategy dealing with the problem-specific knowledge is incorporated to improve the effectiveness of the new algorithm. Experiments on computer-generated and real-world networks demonstrate that the proposed algorithm can not only find community structure and capture community evolution more accurately, but also be steadier than the two compared algorithms.


Author(s):  
Yu Wang ◽  
Aniket Chakrabarti ◽  
David Sivakoff ◽  
Srinivasan Parthasarathy

A number of real world problems in many domains (e.g. sociology, biology, political science and communication networks) can be modeled as dynamic networks with nodes representing entities of interest and edges representing interactions among the entities at different points in time. A common representation for such models is the snapshot model - where a network is defined at logical time-stamps. An important problem under this model is change point detection. In this work we devise an effective and efficient three-step-approach for detecting change points in dynamic networks under the snapshot model. Our algorithm achieves up to 9X speedup over the state-of-the-art while improving quality on both synthetic and real world networks.


Author(s):  
Yu Han ◽  
Jie Tang ◽  
Qian Chen

Network embedding has been extensively studied in recent years. In addition to the works on static networks, some researchers try to propose new models for evolving networks. However, sometimes most of these dynamic network embedding models are still not in line with the actual situation, since these models have a strong assumption that we can achieve all the changes in the whole network, while in fact we cannot do this in some real world networks, such as the web networks and some large social networks. So in this paper, we study a novel and challenging problem, i.e., network embedding under partial monitoring for evolving networks. We propose a model on dynamic networks in which we cannot perceive all the changes of the structure. We analyze our model theoretically, and give a bound to the error between the results of our model and the potential optimal cases. We evaluate the performance of our model from two aspects. The experimental results on real world datasets show that our model outperforms the baseline models by a large margin.


Author(s):  
Chengbin Hou ◽  
Ke Tang

Dynamic Network Embedding (DNE) has recently drawn much attention due to the dynamic nature of many real-world networks. Comparing to a static network, a dynamic network has a unique character called the degree of changes, which can be defined as the average number of the changed edges between consecutive snapshots spanning a dynamic network. The degree of changes could be quite different even for the dynamic networks generated from the same dataset. It is natural to ask whether existing DNE methods are effective and robust w.r.t. the degree of changes. Towards robust DNE, we suggest two important scenarios. One is to investigate the robustness w.r.t. different slicing settings that are used to generate different dynamic networks with different degree of changes, while another focuses more on the robustness w.r.t. different number of changed edges over timesteps.


Sign in / Sign up

Export Citation Format

Share Document