scholarly journals Artifact Removal from EEG using Spatially Constrained Independent Component Analysis and Wavelet Denoising with Otsu's Thresholding Technique

2012 ◽  
Vol 30 ◽  
pp. 1064-1071 ◽  
Author(s):  
G. Geetha ◽  
S.N. Geethalakshmi
2020 ◽  
Vol 2020 (14) ◽  
pp. 357-1-357-6
Author(s):  
Luisa F. Polanía ◽  
Raja Bala ◽  
Ankur Purwar ◽  
Paul Matts ◽  
Martin Maltz

Human skin is made up of two primary chromophores: melanin, the pigment in the epidermis giving skin its color; and hemoglobin, the pigment in the red blood cells of the vascular network within the dermis. The relative concentrations of these chromophores provide a vital indicator for skin health and appearance. We present a technique to automatically estimate chromophore maps from RGB images of human faces captured with mobile devices such as smartphones. The ultimate goal is to provide a diagnostic aid for individuals to monitor and improve the quality of their facial skin. A previous method approaches the problem as one of blind source separation, and applies Independent Component Analysis (ICA) in camera RGB space to estimate the chromophores. We extend this technique in two important ways. First we observe that models for light transport in skin call for source separation to be performed in log spectral reflectance coordinates rather than in RGB. Thus we transform camera RGB to a spectral reflectance space prior to applying ICA. This process involves the use of a linear camera model and Principal Component Analysis to represent skin spectral reflectance as a lowdimensional manifold. The camera model requires knowledge of the incident illuminant, which we obtain via a novel technique that uses the human lip as a calibration object. Second, we address an inherent limitation with ICA that the ordering of the separated signals is random and ambiguous. We incorporate a domain-specific prior model for human chromophore spectra as a constraint in solving ICA. Results on a dataset of mobile camera images show high quality and unambiguous recovery of chromophores.


2020 ◽  
Author(s):  
Hongkun Li ◽  
Gangjin Huang ◽  
Jiayu Ou ◽  
Yuanliang Zhang

Abstract Industrial machinery is developing in the direction of large-scale, automation, and high precision, which brings novel troubles to mechanical equipment management and maintenance. Intelligent diagnosis of mechanical running state based on vibration signals is becoming increasingly important, and it is still a great challenge at pattern recognition. As one of the indispensable components in mechanical equipment, planetary gearboxes are widely used in wind power, aerospace, and heavy industry. However, the problem of automatically maximizing the accuracy of planetary gearbox under different working conditions has not been solved. Therefore, an intelligent diagnosis method for planetary wheel bearing based on constrained independent component analysis (CICA) and stacked sparse autoencoder (SSAE) is presented in this research. Firstly, the fault signal with obvious time-domain characteristics is extracted by constrained independent component analysis (CICA), and the fault signals and noise is separated. Then, calculating the correlation kurtosis value of the time domain signals at different iteration periods as the eigenvalue to obtain the training samples and the test samples. The parameters of the network layer, the number of hidden nodes and learning rate are determined to build the model of SSAE. In the end, the training samples are input into the model for training and the whole network is fine-tuned. The advantages and disadvantages of the model are verified by the test samples. The intelligent classification and diagnosis of the mechanical running state are completed. Experiments analysis with real datasets of planetary wheel bearing show that the proposed method can achieve higher accuracy and robustness for fault classification compared with other data-driven methods. The application of this method in other major machinery industry also has bright prospects.


2019 ◽  
Vol 9 (12) ◽  
pp. 355 ◽  
Author(s):  
Mohamed F. Issa ◽  
Zoltan Juhasz

Electroencephalography (EEG) signals are frequently contaminated with unwanted electrooculographic (EOG) artifacts. Blinks and eye movements generate large amplitude peaks that corrupt EEG measurements. Independent component analysis (ICA) has been used extensively in manual and automatic methods to remove artifacts. By decomposing the signals into neural and artifactual components and artifact components can be eliminated before signal reconstruction. Unfortunately, removing entire components may result in losing important neural information present in the component and eventually may distort the spectral characteristics of the reconstructed signals. An alternative approach is to correct artifacts within the independent components instead of rejecting the entire component, for which wavelet transform based decomposition methods have been used with good results. An improved, fully automatic wavelet-based component correction method is presented for EOG artifact removal that corrects EOG components selectively, i.e., within EOG activity regions only, leaving other parts of the component untouched. In addition, the method does not rely on reference EOG channels. The results show that the proposed method outperforms other component rejection and wavelet-based EOG removal methods in its accuracy both in the time and the spectral domain. The proposed new method represents an important step towards the development of accurate, reliable and automatic EOG artifact removal methods.


Sign in / Sign up

Export Citation Format

Share Document