scholarly journals Features of a Working Process and Characteristics of Irrotational Centrifugal Pumps

2012 ◽  
Vol 39 ◽  
pp. 231-237 ◽  
Author(s):  
Dmitry Syomin ◽  
Andrii Rogovyi
2020 ◽  
Vol 3 (51) ◽  
pp. 19-25
Author(s):  
M. Sotnyk ◽  
V. Moskalenko ◽  
A. Sokhan ◽  
D. Sukhostavets

Purpose. The operation of electromechanical systems (EMS) in off-design modes and in which centrifugal pumps are used is accompanied by a number of negative factors, a special place among which is occupied by excessive blade vibration of the pump, which negatively affects its operational characteristics and causes a reduction in the service life of the main EMS units. Thus, an urgent task is to improve the operating characteristics of the pump as a component of EMS, which, by increasing the energy efficiency of the EMS working process and/or reducing the total cost of the life cycle of the pumps in their composition, will ultimately have a significant economic effect. Methodology. Experimental research of working process of an electric pump aggregate type D according to DSTU 6134:2009 and ISO 10816-3:2014. Results. Based on the experimental research results of vibration state of the pump D2000-100-2 bearing shell, which operates as part of the EMS, and the intensity of fluid pressure pulsations at its outlet, the limit root mean square value (RMS) of the pressure pulsation amplitude (∆Р ≥ 35,8 kPa and/or 3,4 % Н) is set at which an excess of the established ISO 10816: 3-2014 limit RMS of vibration velocity of the pump bearing shell ( V  2,8 mm/s ) and also is determined correlation coefficient ( / л k V Р ), which characterizes the RMS of the vibration velocity of the pump bearing shell at the blade frequency ( Vл ) depending on the RMS amplitude of the blade pressure pulsations (∆Р). Practical value. Since the number and systematic of experimental researches of the effect of pump parameters on the intensity of its blade vibration is complicated by the high cost of their implementation, therefore, it is advisable in further researches to use the RMS amplitude of blade pressure pulsations as an indirect indicator of the RMS vibration velocity of the pump bearing shell at the blade frequency. Conclusion. The intensity of pressure pulsations and influence of main parameters of the pump on their amplitude, with sufficient accuracy for engineering calculations can be determined by numerical modeling of the unsteady fluid flow in the flowing part of the pump. Figures 5, tables 2, references 10.


2009 ◽  
Vol 56 (S 01) ◽  
Author(s):  
JFM Bechtel ◽  
EI Charitos ◽  
T Hanke ◽  
M Misfeld ◽  
C Schmidtke ◽  
...  

Author(s):  
Hamidreza Bozorgasareh ◽  
Mohammad Jafari ◽  
Javad Khalesic ◽  
Heshmat Olah Gazori ◽  
Mostafa Hassanalian

Author(s):  
Edgar Ofuchi ◽  
Ana Leticia Lima Santos ◽  
Thiago Sirino ◽  
Henrique Stel ◽  
Rigoberto Morales

2018 ◽  
Vol 1 (2) ◽  
pp. 24-39
Author(s):  
A. Farid ◽  
A. Abou El-Azm Aly ◽  
H. Abdallah

Cavitation in pumps is the most severe condition that centrifugal pumps can work in and is leading to a loss in their performance.  Herein, the effect of semi-open centrifugal pump side clearance on the inception of pump cavitation has been investigated.  The input pump pressure has been changed from 80 to 16 kPa and the pump side clearance has been changed from 1 mm to 3 mm at a rotation speed of 1500 rpm. It has been shown that as the total input pressure decreased; the static pressure inside the impeller is reduced while the total pressure in streamwise direction has been reduced, also the pump head is constant with the reduction of the total input pressure until the cavitation is reached. Head is reduced due to cavitation inception; the head is reduced in the case of a closed impeller with a percent of 1.5% while it is reduced with a percent of 0.5% for pump side clearance of 1mm, both are at a pressure of 20 kPa.   Results also showed that the cavitation inception in the pump had been affected and delayed with the increase of the pump side clearance; the cavitation has been noticed to occur at approximate pressures of 20 kPa for side clearance of 1mm, 18 kPa for side clearances of 2mm and 16 kPa for 3mm.


2019 ◽  
Vol 20 (2) ◽  
pp. 219-227 ◽  
Author(s):  
A. A. Zuev ◽  
◽  
V. P. Nazarov ◽  
A. A. Arngold ◽  
I. M. Petrov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document