scholarly journals Numerical Modeling of Transient Operation of a Plate Fin and Tube Heat Exchanger at Transition Fluid Flow in Tubes

2016 ◽  
Vol 157 ◽  
pp. 163-170 ◽  
Author(s):  
Dawid Taler ◽  
Anna Korzeń
Author(s):  
M. Izadi ◽  
D. K. Aidun ◽  
P. Marzocca ◽  
H. Lee

The effect of geometrical features on the air-side heat transfer and friction characteristics of an industrial plain fin-and-tube heat exchanger is investigated by 3-D numerical modeling and simulations. The heat exchanger has been designed and employed as an intercooler in a gas power plant and is a large-size compact heat exchanger. Most of the available design correlations developed so far for plain fin–and–tube heat exchangers have been prepared for small-size exchangers and none of them fits completely to the current heat exchanger regarding the geometrical limitations of correlations. It is shown that neglecting these limitations and applying improper correlations may generate considerable amount of error in the design of such a large-size heat exchanger. The geometry required for numerical modeling is produced by Gambit® software and the boundary conditions are defined regarding the real operating conditions. Then, three-dimensional simulations based on the SIMPLE algorithm in laminar flow regime are performed by FLUENT™ code. The effect of fin pitch, tube pitch, and tube diameter on the thermo-hydraulic behavior of the heat exchanger is studied. Some variations in the design of the heat exchanger are suggested for optimization purposes. It is finally concluded that the current numerical model is a powerful tool to design and optimize of large-size plain fin-and-tube heat exchangers with acceptable accuracy.


2018 ◽  
Vol 20 (1) ◽  
pp. 60-66 ◽  
Author(s):  
Kai Wang ◽  
Zixu Zhang ◽  
Qiong Liu ◽  
Xincheng Tu ◽  
Hyoung-Bum Kim

Abstract In order to improve the performance of the shell and tube heat exchanger, a porous baffle and a splitter bar are employed in this research. Through the arrangement of the porous baffle in the tube-side inlet and the splitter bar in the tube, the flow distribution of liquid in the heat exchanger is improved. PIV technology is used to investigate the unsteady flow in the tube-side inlet and the outlet of different models. The porous baffle significantly improves the flow of fluid in the shell and tube heat exchanger, especially by eliminating/minimizing the maldistribution of fluid flow in the tube-side inlet. The performance of the arc baffle is better than that of the straight baffle. The splitter bar has a minimal effect on the flow field of the tube-side inlet, but it effectively improves the flow in the tube bundle and restrains the vortex generation in the tube-side outlet.


2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Shobhana Singh ◽  
Kim Sørensen ◽  
Thomas Condra

In the present work, a numerical analysis of conjugate heat transfer and fluid flow in vortex generator (VG) enhanced double-fin and tube heat exchanger is carried out. The enhanced design aims to improve the heat transfer performance of a conventional double-fin and tube heat exchanger for waste heat recovery applications. A three-dimensional (3D) numerical model is developed using ANSYS cfx to simulate fluid flow and conjugate heat transfer process. Numerical simulations with rectangular winglet vortex generators (RWVGs) at five different angles of attack (−20deg≤α≤20deg) are performed for the Reynolds number range of 5000≤Re≤11,000. Salient performance characteristics are analyzed in addition to the temperature distribution and flow fields. Based on the numerical results, it is concluded that the overall performance of the double-fin and tube heat exchanger can be improved by 27–91% by employing RWVGs at α=−20deg for the range of Reynolds number investigated. The study provides useful design information and necessary performance data that can be adopted for the design development of the heat exchanger at a lower manufacturing cost.


2009 ◽  
Vol 131 (9) ◽  
Author(s):  
Liting Tian ◽  
Yaling He ◽  
Pan Chu ◽  
Wenquan Tao

In this paper, three-dimensional numerical simulations with renormalization-group (RNG) k-ε model are performed for the air-side heat transfer and fluid flow characteristics of wavy fin-and-tube heat exchanger with delta winglet vortex generators. The Reynolds number based on the tube outside diameter varies from 500 to 5000. The effects of different geometrical parameters with varying attack angle of delta winglet (β=30 deg, β=45 deg, and β=60 deg), tube row number (2–4), and wavy angle of the fin (θ=0–20 deg) are examined. The numerical results show that each delta winglet generates a downstream main vortex and a corner vortex. The longitudinal vortices are disrupted by the downstream wavy trough and only propagate a short distance along the main flow direction but the vortices greatly enhance the heat transfer in the wake region behind the tube. Nusselt number and friction factor both increase with the increase in the attack angle β, and the case of β=30 deg has the maximum value of j/f. The effects of the tube row number on Nusselt number and friction factor are very small, and the heat transfer and fluid flow become fully developed very quickly. The case of θ=5 deg has the minimum value of Nusselt number, while friction factor always increases with the increase in wavy angle. The application of delta winglet enhances the heat transfer performance of the wavy fin-and-tube heat exchanger with modest pressure drop penalty.


Sign in / Sign up

Export Citation Format

Share Document