scholarly journals Pavement Maintenance Optimization Strategies for National Road Network in Indonesia Applying Genetic Algorithm

2017 ◽  
Vol 210 ◽  
pp. 253-260 ◽  
Author(s):  
Hamdi ◽  
Sigit P. Hadiwardoyo ◽  
A. Gomes Correia ◽  
Paulo Pereira
2016 ◽  
Vol 845 ◽  
pp. 369-378 ◽  
Author(s):  
Andri Irfan Rifai ◽  
Sigit Pranowo Hadiwardoyo ◽  
António Gomes Correia ◽  
Paulo Pereira

National Road Network which consists of a traditional road structure and modern roads, require planned maintenance and should be in accordance with the needs. The limited choice of available national road network and the deviation of the overloading encourage the government to be more responsive to carry out maintenance management. The institution in charge of road maintenance is often constrained by the limited budget available. A two-objective optimization model considers maximum roughness and minimum maintenance cost for used road network with overload. The study was conducted on the entire national road network in West Java which are paved with flexible pavement. In the proposed approach, data mining model are used for predicting the roughness index over a given period of time. Routine and periodic maintenance are chosen in this study. Multi-objective optimization model was developed based on Genetic Algorithms. Budget constraints and overloading are the two constraints in the developed model. Based on the R-Tools result, the Pareto optimal solutions of the two objective functions are obtained. From the optimal solutions represented by roughness index and cost, an agency more easily obtain the information of the maintenance planning. Results of the developed model has been implemented through the selection of maintenance on the road network scenarios with different levels of overload.


2021 ◽  
Author(s):  
Egor Svechnikov ◽  
Johan Maljaars ◽  
Bert Snijder ◽  
Johan de Boon ◽  
Eize Drenth

<p>Many developed countries have a national road network including a significant number of bridges in need of renovation or replacement in the coming years. The reason for this is their technical and functional capacity becoming insufficient due to aging and changes in societal demands. Therefore, these bridges need to be adjusted or replaced. National authorities in The Netherlands currently require a design life of 100 years for new bridges, however nowadays it seems reasonable to have a certain flexibility for this parameter. Since the selected design life has its implications on structural solutions and choice of materials, the identification of the optimal design life for bridges seems necessary. This paper gives a summary on the issue regarding the optimum design life of bridges and it highlights the framework of the upcoming research activities.</p>


1993 ◽  
Vol 20 (3) ◽  
pp. 436-447 ◽  
Author(s):  
Dale M. Nesbit ◽  
Gordon A. Sparks ◽  
Russell D. Neudorf

The problem of determining optimal pavement maintenance and rehabilitation strategies is a special case of a more general problem termed the asset depreciation problem. Perhaps the most general formulation and solution of the asset depreciation problem is the semi-Markov formulation. This paper illustrates how the semi-Markov formulation and solution of the general asset depreciation problem can be applied to pavements. The semi-Markov formulation, like the Markov formulation, characterizes pavement deterioration probabilistically and represents human intervention (maintenance and rehabilitation) as slowing or modifying the basic probabilities of deterioration. The Markov formulation, first implemented for the state of Arizona, is shown to be a special case of the more general, less computationally intensive semi-Markov formulation. The application of the semi-Markov formulation is illustrated at the project level for a heavy-duty pavement in Manitoba. Key words: asset depreciation, infrastructure management, pavement management, probabilistic modelling, Markov, semi-Markov, maintenance optimization, project level.


Sign in / Sign up

Export Citation Format

Share Document