scholarly journals Study of Downward Flame Spread and Fire Risk Evaluation of the Thermoplastic Materials

2018 ◽  
Vol 211 ◽  
pp. 590-598 ◽  
Author(s):  
Ruo-wen Zong ◽  
Jie Ren ◽  
Xi-ping Liu ◽  
You-ran Zhi
Polymers ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 167
Author(s):  
Weiguang An ◽  
Lujun Peng ◽  
Minglun Cai ◽  
Kaiyang Hu ◽  
Song Li ◽  
...  

Polymethyl methacrylate plates are widely applied to buildings, producing significant fire hazards. It lacks a theoretical basis for the fire risk assessment of polymethyl methacrylate in concave building facades. Therefore, experimental methods are used to investigate combustion characteristics of discrete polymethyl methacrylate plates in a concave building facade. Influences of fuel coverage and structure factor are investigated, which is scant in previous works. When structure factor is invariable, average flame height increases first and then decreases as fuel coverage increases, and the turning point is between 0.64 and 0.76. In total, three different patterns of pyrolysis front propagation are first observed for different fuel coverages. Flame spread rate first increases and then decreases as fuel coverage rises, and the turning point is also between 0.64 and 0.76. When fuel coverage is invariable, the flame spread rate first increases and then decreases with increasing structure factor, and the turning point is 1.2. A model for predicting the flame spread rate of discrete polymethyl methacrylate is also developed. The predicted values are consistent with experimental results. Fuel spread rate of discrete polymethyl methacrylate rises as the fuel coverage increases. The above results are beneficial for thermal hazard evaluation and fire safety design of polymethyl methacrylate used in buildings.


2014 ◽  
Vol 664 ◽  
pp. 199-203 ◽  
Author(s):  
Wei Guang An ◽  
Lin Jiang ◽  
Jin Hua Sun ◽  
K.M. Liew

An experimental study on downward flame spread over extruded polystyrene (XPS) foam at a high elevation is presented. The flame shape, flame height, mass loss rate and flame spread rate were measured. The influences of width and high altitude were investigated. The flame fronts are approximately horizontal. Both the intensity of flame pulsation and the average flame height increase with the rise of sample width. The flame spread rate first drops and then rises with an increase in width. The average flame height, mass loss rate and flame spread rate at the higher elevation is smaller than that at a low elevation, which demonstrates that the XPS fire risk at the higher elevation area is lower. The experimental results agree well with the theoretical analysis. This work is vital to the fire safety design of building energy conservation system.


2019 ◽  
Vol 161 (A2) ◽  

Lightweight composite materials are increasingly used in the ship industry as a substitute to their heavier steel alternatives. These materials are often inherently flammable and require an assessment of the fire risk associated with their flame spread and smoke & toxicity in order to enable their safe usage. However, for plastic pipes there are contradictions within the IMO (International Maritime Organisation) guidelines which lead to different interpretations and different implementations. The goal of this work is to evaluate whether smoke and toxicity is adequately assessed for products currently approved for use and commercially available on the market. Testing according to standardised means given in the IMO code shows that the materials fail both flame spread and smoke & toxicity testing. This proves that there are different interpretations and illustrates the need for clarity in this area to enable safe and consistent use of these materials.


Sign in / Sign up

Export Citation Format

Share Document