scholarly journals Hydrogen Embrittlement in Advanced High Strength Steels and Ultra High Strength Steels: a new investigation approach

2018 ◽  
Vol 13 ◽  
pp. 753-762
Author(s):  
Antonello Cherubini ◽  
Linda Bacchi ◽  
Serena Corsinovi ◽  
Marco Beghini ◽  
Renzo Valentini
2018 ◽  
Vol 36 (5) ◽  
pp. 413-434 ◽  
Author(s):  
Darya Rudomilova ◽  
Tomáš Prošek ◽  
Gerald Luckeneder

AbstractProduction volumes of advanced high strength steels (AHSS) are growing rapidly due to material and energy savings they provide in a number of application areas. In order to use their potential fully, it is necessary to minimize any danger of unexpected failures caused by hydrogen embrittlement. It is possible only if deeper understanding of underlying mechanisms is obtained through further research. Besides description of main grades of AHSS and mechanisms of HE, this paper reviews available tools for determination of hydrogen content and susceptibility to HE focusing on atmospheric conditions. Techniques such as slow strain rate testing, constant load testing, electrochemical permeation technique, scanning Kelvin probe and scanning Kelvin probe force microscopy have already been used to study the effect of hydrogen entered under atmospheric exposure conditions. Nanoindentation, hydrogen microprint technique, thermal desorption spectroscopy, Ag decoration or secondary ion mass spectrometry can be also conducted after atmospheric exposure.


2016 ◽  
Vol 34 (3) ◽  
pp. 153-186 ◽  
Author(s):  
Jeffrey Venezuela ◽  
Qinglong Liu ◽  
Mingxing Zhang ◽  
Qingjun Zhou ◽  
Andrej Atrens

AbstractThe martensitic advanced high-strength steels (MS-AHSS) are used to create fuel-efficient, crashworthy cars. Hydrogen embrittlement (HE) is an issue with high-strength steels; thus, the interaction of hydrogen with MS-AHSS needs to be studied. There are only a few published works on the HE of MS-AHSS. The current literature indicates that the HE susceptibility of MS-AHSS is affected by (i) the strength of the steel, (ii) the applied strain rate, (iii) the concentration of hydrogen, (iv) microstructure, (v) tempering, (vi) residual stress, (vii) fabrication route, (viii) inclusions, (ix) metallic coatings, and (x) specific precipitates. Some of the unresolved issues include (i) the correlation of laboratory results to service performance, (ii) establishing the conditions or factors that lead to a certain HE response, (iii) studying the effect of stress rate on HE, and (iv) a comprehensive understanding of hydrogen trapping in MS-AHSS.


2012 ◽  
Vol 1373 ◽  
Author(s):  
I. Mejía ◽  
A. García de la Rosa ◽  
A. Bedolla-Jacuinde ◽  
J.M. Cabrera

ABSTRACTThe aim of this research work is to study the effect of boron addition on mechanical properties and microstructure of a new family of low carbon NiCrVCu advanced high strength steels (AHSS). Experimental steels are thermo-mechanically processed (TMP) (hot-rolled+quenched). Results show that the microstructure of these steels contains bainite and martensite, predominantly, which nucleate along prior austenite grain boundaries (GB). On the other hand, tensile tests reveal that the TMP steels have YS (0.2% offset) of 978 MPa, UTS of 1140 MPa and EL of 18%. On the basis of exhibited microstructure and mechanical properties, these experimental steels are classified as bainitic-martensitic complex phase (CP) advanced ultra-high strength steels (UHSS).


2006 ◽  
Vol 48 (8) ◽  
pp. 1926-1938 ◽  
Author(s):  
L.W. Tsay ◽  
M.Y. Chi ◽  
Y.F. Wu ◽  
J.K. Wu ◽  
D.-Y. Lin

2012 ◽  
Vol 43 (11) ◽  
pp. 4075-4087 ◽  
Author(s):  
Gianfranco Lovicu ◽  
Mauro Bottazzi ◽  
Fabio D’Aiuto ◽  
Massimo De Sanctis ◽  
Antonella Dimatteo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document