kelvin probe
Recently Published Documents


TOTAL DOCUMENTS

1554
(FIVE YEARS 270)

H-INDEX

66
(FIVE YEARS 7)

Author(s):  
Diogo José Horst ◽  
Charles Adriano Duvoisin ◽  
Rogério De Almeida Vieira ◽  
Jesús Alejandro Arizpe ◽  
Esther Alejandra Huitrón Segovia ◽  
...  

The main objective of this work was to study the synthesis and characteristics of two-dimensional heterostructures (2D/2D) using pure molybdenum disulfide (MoS[Formula: see text] and doped with phosphorus at 5% and 15% combined with graphene oxide (GO) and graphene monolayer. These were deposited on silicon and copper substrates using two different deposition methods: Microdrop casting and chemical vapor deposition. Chemical and structural information of the samples were characterized by Raman spectroscopy, Energy Dispersion X-ray Spectroscopy (EDS), Scanning Electron Microscopy (SEM) and Kelvin Probe Force Microscopy (KPFM). The results prove the synergy between the materials resulting in electronic coupling, making this system potential for applications in electronic devices such as sensors, resistors and capacitors.


2022 ◽  
Author(s):  
Guangyu Geng ◽  
Enxiu Wu ◽  
Linyan Xu ◽  
Xiaodong Hu ◽  
Xiaopu Miao ◽  
...  

Abstract Atomically two-dimensional (2D) materials have generated widespread interest for novel electronics and optoelectronics. Specially, owing to atomically thin 2D structure, the electronic bandgap of 2D semiconductors can be engineered by manipulating the surrounding dielectric environment. In this work, we develop an effective and controllable approach to manipulate dielectric properties of h-BN through gallium ions (Ga+) implantation for the first time. And the maximum surface potential difference between the intrinsic h-BN (h-BN) and the Ga+ implanted h-BN (Ga+-h-BN) is up to 1.3 V, which is characterized by Kelvin Probe Force Microscopy (KPFM). More importantly, the MoTe2 transistor stacked on Ga+-h-BN exhibits p-type dominated transfer characteristic, while the MoTe2 transistor stacked on the intrinsic h-BN behaves as n-type, which enable to construct MoTe2 heterojunction through dielectric engineering of h-BN. The dielectric engineering also provides good spatial selectivity and allows to build MoTe2 heterojunction based on a single MoTe2 flake. The developed MoTe2 heterojunction shows stable anti-ambipolar behaviour. Furthermore, we preliminarily implemented a ternary inverter based on anti-ambipolar MoTe2 heterojunction. Ga+ implantation assisted dielectric engineering provides an effective and generic approach to modulate electric bandgap for a wide variety of 2D materials. And the implementation of ternary inverter based on anti-ambipolar transistor could lead to new energy-efficient logical circuit and system designs in semiconductors.


2022 ◽  
Author(s):  
Evandro Martin Lanzoni ◽  
Saimon Covre da Silva ◽  
Floris Knopper ◽  
Ailton J Garcia ◽  
Carlos Alberto Rodrigues Costa ◽  
...  

Abstract Unstrained GaAs quantum dots are promising candidates for quantum information devices due to their optical properties, but their electronic properties have remained relatively unexplored until now. In this work, we systematically investigate the electronic structure and natural charging of GaAs quantum dots at room temperature using Kelvin probe force microscopy (KPFM). We observe a clear electrical signal from structures demonstrating a lower surface potential in the middle of the dot. We ascribe this to charge accumulation and confinement inside these structures. Our systematical investigation reveals that the change in surface potential is larger for a nominal dot filling of 2 nm and then starts to decrease for thicker GaAs layers. Using k . p calculation, we show that the confinement comes from the band banding due to the surface Fermi level pinning. Our results indicate that these self-assembled structures could be used to study physical phenomena connected to charged quantum dots like Coulomb blockade or Kondo effect.


2021 ◽  
Vol 23 (1) ◽  
pp. 279
Author(s):  
Igor Buzalewicz ◽  
Iwona Hołowacz ◽  
Anna K. Matczuk ◽  
Mateusz Guźniczak ◽  
Dominika Skrzela ◽  
...  

The worldwide increase in bacterial resistance and healthcare-associated bacterial infections pose a serious threat to human health. The antimicrobial photodynamic method reveals the opportunity for a new therapeutic approach that is based on the limited delivery of photosensitizer from the material surface. Nanoporous inorganic–organic composites were obtained by entrapment of photosensitizer Photolon in polysiloxanes that was prepared by the sol–gel method. The material was characterized by its porosity, optical properties (fluorescence and absorbance), and laser-induced antimicrobial activity against Staphylococcus epidermidis, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. The permanent encapsulation of Photolon in the silica coating and the antimicrobial efficiency was confirmed by confocal microscope and digital holotomography. The generation of free radicals from nanoporous surfaces was proved by scanning Kelvin probe microscopy. For the first time, it was confirmed that Kelvin probe microscopy can be a label-free, noncontact alternative to other conventional methods based on fluorescence or chemiluminescence probes, etc. It was confirmed that the proposed photoactive coating enables the antibacterial photodynamic effect based on free radicals released from the surface of the coating. The highest bactericidal efficiency of the proposed coating was 87.16%. This coating can selectively limit the multiplication of bacterial cells, while protecting the environment and reducing the risk of surface contamination.


Author(s):  
Ming-Chung Wu ◽  
Ruei-Yu Kuo ◽  
Yin-Hsuan Chang ◽  
Shih-Hsuan Chen ◽  
Ching-Mei Ho​ ◽  
...  

Abstract Objectives Toxic lead and poor stability are the main obstacles of perovskite solar cells. Lead-free silver bismuth iodide (SBI) was first attempted as solar cells photovoltaic materials in 2016. However, the short-circuit current of the SBI rudorffite materials is commonly below 10 mA/cm2, limiting the overall photovoltaic performance. Here, we present a chemical composition engineering to enhance the photovoltaic performance. Methods In this study, we incorporated a series of alkali metal cations (Li+, Na+, K+, Rb+, and Cs+) into Ag3BiI6 absorbers to investigate the effects on the photovoltaic performance of rudorffite solar cells. Results Cs+ doping improved VOC and Na+ doping showed an obvious enhancement in JSC. Therefore, we co-doped Na+ and Cs+ into SBI (Na/Cs-SBI) as the absorber and investigated the crystal structure, surface morphology, and optical properties. The photo-assisted Kelvin probe force microscopy (photo-KPFM) was used to measure surface potential and verified that Na/Cs doping could reduce the electron trapping at the grain boundary and facilitate electron transportation. Conclusion Na/Cs-SBI reduced the electron-holes pairs recombination and promoted the carrier transport of rudorffite solar cells. Finally, the Na/Cs-SBI rudorffite solar cell exhibited a PCE of 2.50%, a 46.0% increase to the SBI device (PCE = 1.71%), and was stable in ambient conditions for over 6 months.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jibiao Zhang ◽  
Bo Zhu ◽  
Haoran Wang ◽  
Cheng Zhang ◽  
Weixiu Zeng ◽  
...  

Applying organic coating is an important and effective approach for the protection of metal from corrosion. Weathering degradation and under-film corrosion are the two major important factors that cause the failure of organic coatings. In this work, the degradation investigation of two epoxy coatings (clear and pigmented coatings) was carried out under the dry–wet circulation of three different water fog solutions (deionized water, 0.5 wt% NaCl, 0.05 wt% NaCl + 0.35 wt% (NH4)2SO4) in 35 days. The apparent performance (pull-off adhesion and surface potentials) and electrochemical features [electrochemical noise and electrochemical impedance spectroscopy (EIS)] of the coating samples were monitored after dry–wet fog exposure. In our three accelerating systems of the fog atmosphere, the time that the detectable defects appeared on the surface of coating samples was far ahead in the mixed salt solution than that in the deionized water or 0.5 wt% NaCl solution. For a defective or damaged coating surface, the derived results by using the standard deviation method (SDM) or Fourier power spectrum (FPS) were rather higher than those obtained from EIS as a whole, while for the same coating, the degradation trend with time derived from EIS, SDM, FPS, and scanning Kelvin probe was consistent with each other.


2021 ◽  
Vol 12 ◽  
pp. 1380-1391
Author(s):  
Kerstin Neuhaus ◽  
Christina Schmidt ◽  
Liudmila Fischer ◽  
Wilhelm Albert Meulenberg ◽  
Ke Ran ◽  
...  

In this study, a dual phase composite (CSO-FC2O) consisting of 60 vol % Ce0.8Sm0.2O1.9 as oxygen-conductive phase and 40 vol % FeCo2O4 as electron-conductive phase was synthesized. TEM measurements showed a relatively pure dual-phase material with only minor amounts of a tertiary (Sm,Ce)(Fe,Co)O3 perovskite phase and isolated residues of a rock salt phase at the grain boundaries. The obtained material was used as a model to demonstrate that a combination of polarization relaxation measurements and Kelvin probe force microscopy (KPFM)-based mapping of the Volta potential before and after the end of polarization can be used to determine the chemical diffusion coefficient of the ceria component of the composite. The KPFM measurements were performed at room temperature and show diffusion coefficients in the range of 3 × 10−13 cm2·s−1, which is comparable to values measured for single-phase Gd-doped ceria thin films using the same method.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Imtiaz Ahmed Shozib ◽  
Azlan Ahmad ◽  
Ahmad Majdi Abdul-Rani ◽  
Mohammadali Beheshti ◽  
Abdul’Azeez Abdu Aliyu

Abstract This paper aims to review the impact of different factors influencing the corrosion resistance of electroless Ni-P based coatings. Emphasis has been given onto the impact of phosphorus content, incorporation of alloying elements, addition of particles and heat treatment which have been discussed in detail and critically reviewed. The effect of corrosive media and coating process parameters on corrosion resistance are studied concisely. Furthermore, the role of the incorporation of various elements and particles’ contents on the corrosion resistance of electroless Ni-P coating are studied systematically. This paper also presents an overview of the latest electrochemical corrosion measuring techniques. The following approaches deserve special attention in the analysis: localized electrochemical impedance spectroscopy (LEIS), scanning vibrating electrode technique (SVET), scanning ion-selective electrode technique (SIET), scanning droplet cell (SDC), scanning electrochemical microscopy (SECM), scanning Kelvin probe (SKP) and novel contactless technique (NCT).


Sign in / Sign up

Export Citation Format

Share Document