scholarly journals J-integral evaluation of additively manufactured polymer using local kinematic field measurements and finite element simulations

2020 ◽  
Vol 28 ◽  
pp. 393-402
Author(s):  
Mohamed Ali Bouaziz ◽  
Joseph Marae Djouda ◽  
François Hild
2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Luís F. S. Parise ◽  
Claudio Ruggieri ◽  
Noel P. O'Dowd

Modern installation techniques for marine pipelines and subsea risers are often based on the reel-lay method, which introduces significant (plastic) strains on the pipe during reeling and unreeling. The safe assessment of cracklike flaws under such conditions requires accurate estimations of the elastic–plastic crack driving forces, ideally expressed in a strain-based formulation to better account for the displacement controlled nature of the reeling method. This paper aims to facilitate such assessments by presenting a strain-based expression of the well-known Electric Power Research Institute (EPRI) estimation scheme for the J integral, which is directly based upon fully plastic descriptions of fracture behavior under significant plasticity. Parametric finite element simulations of bending of circumferentially cracked pipes have been conducted for a set of crack geometries, pipe dimensions, and material hardening properties representative of current applications. These provide the numerical assessment of the crack driving force upon which the nondimensional factors of the EPRI methodology, which scale J with applied strain, are derived. Finally, these factors are presented in convenient graphical and tabular forms, thus allowing the direct and accurate assessment of the J integral for circumferentially cracked pipes subjected to reeling. Further results show that crack driving force values estimated using the proposed methodology and the given g1 factors are in very close agreement to those obtained directly from the finite element simulations.


2005 ◽  
Vol 32 (3-4) ◽  
pp. 463-471 ◽  
Author(s):  
A.V. Mitrofanov ◽  
V.I. Babitsky ◽  
V.V. Silberschmidt

2021 ◽  
Vol 11 (14) ◽  
pp. 6317
Author(s):  
Feng Jin ◽  
Hong Xiao ◽  
Mahantesh M Nadakatti ◽  
Huiting Yue ◽  
Wanting Liu

In this study, the rapid growth of corrugation caused by the bad quality of grinding works and their wavelength, depth, and evolution processes are captured through field measurements. The residual grinding marks left by poor grinding quality lead to further crack accumulation and corrugation deterioration by decreasing plastic resistance in rails. In this case, the average peak-to-peak values of corrugation grow extremely fast, reaching 1.4 μm per day. The finite element method (FEM) and fracture mechanics methodologies were used to analyze the development and trends in rail surface crack deterioration by considering rails with and without grinding marks. Crack propagation trends increase with residual grinding marks, and they are more severe in circular curve lines. To avoid the rapid deterioration of rail corrugation, intersections between grinding marks and fatigue cracks should be avoided.


Sign in / Sign up

Export Citation Format

Share Document