crack driving force
Recently Published Documents


TOTAL DOCUMENTS

193
(FIVE YEARS 24)

H-INDEX

17
(FIVE YEARS 2)

Author(s):  
Jad Khodor ◽  
Kaan Özenç ◽  
Aurel Qinami ◽  
Guoyu Lin ◽  
Michael Kaliske

AbstractThe study at hand introduces a new approach to characterize fatigue crack growth in small strain linear viscoelastic solids by configurational mechanics. In this study, Prony series with n-Maxwell elements are used to describe the viscoelastic behavior. As a starting point in this work, the local balance of energy momentum is derived using the free energy density. Moreover, at cyclic loading, the cyclic free energy substitutes the free energy. Using the cyclic free energy, the balance of cyclic energy momentum is obtained. The newly derived balance law at cyclic loading is appropriate for each cycle. In the finite element framework, nodal material forces and cyclic nodal material forces are obtained using the weak and discretized forms of the balance of energy momentum and cyclic energy momentum, respectively. The crack driving force and the cyclic crack driving force are determined by the nodal material forces and the cyclic nodal material forces, respectively. Finally, numerical examples are shown to illustrate path-independence of the domain integrals using material forces and cyclic material forces. The existence of the balance of energy momentum and cyclic energy momentum are also illustrated by numerical examples.


2021 ◽  
Author(s):  
RHYS JONES ◽  
ANTHONY KINLOCH ◽  
J. MICHOPOULOS ◽  
A. P. ILIOPOULOS

Structural adhesives are widely used for joining composite components in many industries and crack growth in such materials is far more likely to occur when they are subjected to repeated cyclic loading than to monotonic loading. Whilst the Hartman- Schijve equation for fatigue crack growth (FCG) has been shown to hold for cohesive crack growth in adhesives under Mode I, Mode II and Mixed-Mode I/II loading, little attention has been paid to its ability to capture the effects of the thickness of the adhesive layer. The present paper examines the growth of fatigue cracks, that occurs cohesively through the adhesive layer, in two toughened epoxy adhesives typical of those used in the automotive and the aerospace industries. Firstly, it is established that when the crack growth rate, da/dN, curves are expressed as a function of Δ√G, or ΔG, where G is the energy release-rate, then the crack growth curves are a function of the thickness of the adhesive layer. It is then shown that this dependency vanishes when da/dN is expressed as a function of the crack-driving force, Δκ, as defined by the Hartman-Schijve equation. Therefore, it is suggested that the parameter Δκ appears to be a valid similitude parameter.


2021 ◽  
Vol 118 (29) ◽  
pp. e2105974118
Author(s):  
Tong Shen ◽  
Zhaoqiang Song ◽  
Shengqiang Cai ◽  
Franck J. Vernerey

We have discovered a peculiar form of fracture that occurs in polymer network formed by covalent adaptable bonds. Due to the dynamic feature of the bonds, fracture of this network is rate dependent, and the crack propagates in a highly nonsteady manner. These phenomena cannot be explained by the existing fracture theories, most of which are based on steady-state assumption. To explain these peculiar characteristics, we first revisit the fundamental difference between the transient network and the covalent network in which we highlighted the transient feature of the cracks. We extend the current fracture criterion for crack initiation to a time-evolution scheme that allows one to track the nonsteady propagation of a crack. Through a combined experimental modeling effort, we show that fracture in transient networks is governed by two parameters: the Weissenberg number W0 that defines the history path of crack-driving force and an extension parameter Z that tells how far a crack can grow. We further use our understanding to explain the peculiar experimental observation. To further leverage on this understanding, we show that one can “program” a specimen’s crack extension dynamics by tuning the loading history.


2021 ◽  
Author(s):  
Kai Wu ◽  
Hong Zhang ◽  
Yue Yang ◽  
Xiaoben Liu

Abstract Strength mismatched pipes with part-through cracks can suffer large plastic deformation from permanent ground deformations caused by geohazards. Thus, the crack driving force involved in engineering critical assessments plays an important role in guaranteeing pipeline integrity when pipes are subjected to complex loads induced by a hostile environment. In this paper, Python scripts are developed to generate up to 200 finite element models of strength mismatched pipes with various crack sizes under large plastic deformations based on the commercial software ABAQUS. The effects of crack length, crack depth, and strength mismatch factors on the evolution of crack tip opening displacement (CTOD) and global strain were investigated. An approximately linear relationship was observed in all cases tested with global strain values varying from 0.5% to 3%. Meanwhile, the value of the CTOD increased with the increase of crack length and crack depth, and decreased with increasing mismatch factor from the undermatch to the overmatch conditions. The effect of the crack depth on the CTOD is comparatively larger than the crack length, which presented an obvious change of the CTOD for deep cracks coupled with undermatched conditions. Overmatched welding only affected the value of CTOD slightly, while a drastic increase of CTOD value was observed for the undermatched welding conditions, especially for deep and long cracks.


Author(s):  
Youn-Young Jang ◽  
Nam-Su Huh ◽  
Ik-Joong Kim ◽  
Young-Pyo Kim

Abstract Long-distance pipelines for the transport of oil and natural gas to onshore facilities are mainly fabricated by girth welding, which has been considered as a weak location for cracking. Pipeline rupture due to crack initiation and propagation in girth welding is one of the main issues of structural integrity for a stable supply of energy resources. The crack assessment should be performed by comparing the crack driving force with fracture toughness to determine the critical point of fracture. For this reason, accurate estimation of the crack driving force for pipelines with a crack in girth weld is highly required. This paper gives the newly developed J-integral and crack-tip opening displacement (CTOD) estimation in a strain-based scheme for pipelines with an internal surface crack in girth weld under axial displacement and internal pressure. For this purpose, parametric finite element analyses have been systematically carried out for a set of pipe thicknesses, crack sizes, strain hardening, overmatch and internal pressure conditions. Using the proposed solutions, tensile strain capacities (TSCs) were quantified by performing crack assessment based on crack initiation and ductile instability and compared with TSCs from curved wide plate tests to confirm their validity.


Sign in / Sign up

Export Citation Format

Share Document