scholarly journals Effect of high temperature on the stiffness properties of cracked composite laminates with different off-axis angles

2020 ◽  
Vol 28 ◽  
pp. 864-872
Author(s):  
Mohamed Khodjet Kesba ◽  
A. Benkhedda ◽  
E.A. Adda bedia ◽  
B. Boukert
2015 ◽  
Vol 727-728 ◽  
pp. 262-265
Author(s):  
Lu Zhang ◽  
Zhen Qing Wang ◽  
Ji Feng Zhang ◽  
Li Min Zhou

A fatal disadvantage of continuously reinforced thermoplastic composites is the high melt viscosity of the matrix which hampers impregnation. However, the melt viscosity of low molecular weight cyclic butylene terephthalate resin can reach extremely low value, which simplifies impregnation and even allows for the use of thermoset production techniques resin transfer moulding. To solve the problem of the glass fiber reinforced poly cyclic butylene terephthalate composites applied in the environment of high temperature, the specimens of composite laminates were tested under and after different temperature. It has been observed that the tensile properties of GF/PCBT composites decrease with increasing temperature between room 25°C and 150°C and tend towards stability after the high temperature.


2017 ◽  
Vol 52 (16) ◽  
pp. 2199-2212 ◽  
Author(s):  
Bernhard Horn ◽  
Johannes Neumayer ◽  
Klaus Drechsler

Composite laminates made of fiber patches offer a large flexibility in terms of layup design. Geometrical layup parameters such as patch length and patch thickness are unique for this type of laminates. This article presents results on the investigation of the influence of patch length and patch thickness on the tensile strength and stiffness properties of patched laminates to contribute to the material understanding. The results show that an increasing of patch thickness leads to a drastic reduction in tensile strength of up to 48.7% for a triplication in patch thickness. The patch length was varied between 20 and 120 mm. Up to 60 mm, the tensile strength increased by 11.5%, further increase did not contribute to a further improved tensile strength. The influence of patch length and patch thickness on the stiffness was found to have only a minor effect. A three-dimensional numerical model that accounts for delamination failure using cohesive zone elements shows very good correlation with the experimental results. This shows its potential for virtual testing to determine tensile strength and stiffness properties of patched laminates without additional testing effort.


2000 ◽  
Author(s):  
Costas Soutis ◽  
Maria Kashtalyan

Abstract Resin dominated damage modes such as matrix cracking in the off-axis plies and matrix crack-induced local and edge delaminations are common failure mechanisms in composite laminates under tensile or thermal fatigue. Accurate prediction of the laminate stiffness and strength must consider all the above-mentioned damage modes. In the present paper, an approach is developed for the analysis of cross-ply laminates damaged by transverse and longitudinal cracks and transverse and longitudinal delaminations that initiate and grow along these cracks. It is based on the Equivalent Constraint Model (ECM) of the damaged ply and employs an improved 2-D shear lag method to determine the stress field in the cracked and locally delaminated ply. The method is applied to predict residual stiffness properties of cross-ply graphite/epoxy laminates using experimentally observed damage patterns.


2009 ◽  
Vol 21 (5) ◽  
pp. 653-672 ◽  
Author(s):  
Sayata Ghose ◽  
Kent A. Watson ◽  
Roberto J. Cano ◽  
Sean M. Britton ◽  
Brian J. Jensen ◽  
...  

Depending on the part type and quantity, fabrication of composite structures using vacuum-assisted resin transfer molding (VARTM) can be more affordable than conventional autoclave techniques. Recent efforts have focused on adapting VARTM for the fabrication of high temperature composites. Due to their low melt viscosity and long melt stability, certain phenylethynyl terminated imides (PETI) can be processed into composites using high temperature VARTM (HT-VARTM). However, one of the disadvantages of the current HT-VARTM resin systems has been the high porosity of the resultant composites. For aerospace applications, the desired void fraction of less than 2% has not yet been achieved. In the current study, two PETI resins, LaRC PETI-330 and LaRC PETI-8 have been used to make test specimens using HT-VARTM. The resins were infused into ten layers of IM7-6K carbon fiber 5-harness satin fabric at 260 or 280 °C and cured at temperature up to 371 °C. Initial runs yielded composites with high void content, typically greater than 7% by weight. A thermogravimetric-mass spectroscopic study was conducted to determine the source of volatiles leading to high porosity. It was determined that under the thermal cycle used for laminate fabrication, the phenylethynyl endcap was undergoing degradation leading to volatile evolution. This finding was unexpected as high quality composite laminates have been fabricated under higher pressures using these resin systems. The amount of weight loss experienced during the thermal cycle was only about 1% by weight, but this led to a significant amount of volatiles in a closed system. By modifying the thermal cycle used in laminate fabrication, the void content was significantly reduced (typically ∼ 3% or less). The results of this work are presented herein.


Sign in / Sign up

Export Citation Format

Share Document