TL1A blocking ameliorates intestinal fibrosis in the T cell transfer model of chronic colitis in mice

2018 ◽  
Vol 214 (2) ◽  
pp. 217-227 ◽  
Author(s):  
Hui Li ◽  
Jia Song ◽  
Guochao Niu ◽  
Hong Zhang ◽  
Jinbo Guo ◽  
...  
2020 ◽  
Vol 14 (Supplement_1) ◽  
pp. S184-S184
Author(s):  
T Gobbetti ◽  
F Kathryn ◽  
A Beal ◽  
A Rowles ◽  
G Pearse ◽  
...  

Abstract Background Inflammatory bowel disease (IBD) is a multifactorial disorder characterised by chronic and relapsing intestinal inflammation. Receptor-interacting protein 1 (RIP1) kinase activity is emerging as a driver of pro-inflammatory cytokine production and cell death and has been implicated in multiple inflammatory diseases including IBD. To this end, recent work has shown that RIP1 kinase inhibition reduces the spontaneous production of cytokines from human ulcerative colitis (UC) and Crohn’s disease explants. Methods The aim of this study was to investigate the anti-inflammatory effect of a highly selective inhibitor of RIP1 kinase activity (GSK547A) in the mouse T-cell transfer model of colitis; a model that shares many features with human IBD. All animal studies were ethically reviewed and carried out in accordance with Animals (Scientific Procedures) Act 1986 and the GSK Policy on the Care, Welfare and Treatment of Animals. Chronic colitis was achieved by transferring CD4+CD45RBhigh T cells into immunodeficient female SCID mice (6/8 weeks old). After confirming the development of pathology using endoscopy and MRI, animals were treated therapeutically with the RIP1 inhibitor GSK547A (50 mg/kg twice a day PO) or vehicle (0.5% hydroxypropyl methylcellulose in water). The severity of colitis was measured 5 weeks after cell transfer both macro- and microscopically. Mucosal damage by endoscopy was also assessed. RT-PCR and MSD analysis were performed to detect colon cytokine/chemokine and calprotectin levels. SAA in the plasma was measured using ELISA. Results We found that treatment with GSK547 significantly ameliorated experimental T-cell-dependent colitis in mice. GSK547A-treated mice displayed decreased weight loss, colon density (ratio weight/length), macroscopic disease activity index, colon thickness compared with vehicle-treated animals. Mucosal damage, assessed by endoscopy and histopathology, was also reduced following treatment with RIP1 kinase inhibitor. In addition, GSK547A reduced the expression of cytokines in the colon (TNF-α, IL-17A, INF-γ, IL-6 and MCP-1), both at a protein and RNA level. Relevant translational biomarkers such as SAA in plasma and RNA calprotectin in the colon were also decreased in the GSK547A treated group when compared with vehicle. Conclusion Our results suggest that RIP1K inhibition is a strong protective factor with anti-inflammatory potential in the progression of chronic colitis, when applied to the translationally relevant T-cell transfer model of colitis. These findings suggest the potential application in the management of inflammatory bowel disease and support the ongoing clinical program evaluating the effect of RIP1 kinase inhibition in UC patients.


2009 ◽  
Vol 296 (2) ◽  
pp. G135-G146 ◽  
Author(s):  
Dmitry V. Ostanin ◽  
Jianxiong Bao ◽  
Iurii Koboziev ◽  
Laura Gray ◽  
Sherry A. Robinson-Jackson ◽  
...  

The inflammatory bowel diseases (Crohn's disease; ulcerative colitis) are idiopathic chronic inflammatory disorders of the intestine and/or colon. A major advancement in our understanding of the pathogenesis of these diseases has been the development of mouse models of chronic gut inflammation. One model that has been instrumental in delineating the immunological mechanisms responsible for the induction as well as regulation of intestinal inflammation is the T cell transfer model of chronic colitis. This paper presents a detailed protocol describing the methods used to induce chronic colitis in mice. Special attention is given to the immunological concepts that explain disease pathogenesis in this model, considerations and potential pitfalls in using this model, and finally different “tricks” that we have learned over the past 12 years that have allowed us to develop a more simplified version of this model of experimental IBD.


Immunology ◽  
2009 ◽  
Vol 127 (3) ◽  
pp. 354-364 ◽  
Author(s):  
Anders Elm Pedersen ◽  
Esben Gjerløff Wedebye Schmidt ◽  
Monika Gad ◽  
Steen Seier Poulsen ◽  
Mogens Helweg Claesson

2006 ◽  
Vol 290 (1) ◽  
pp. G109-G119 ◽  
Author(s):  
Dmitry V. Ostanin ◽  
Kevin P. Pavlick ◽  
Sulaiman Bharwani ◽  
Dwain D′Souza ◽  
Kathryn L. Furr ◽  
...  

It is well known that transfer of CD4+CD45RBhigh (naïve) T cells into syngeneic lymphocyte-deficient mice induces chronic colitis. However, no studies have reported the presence of small bowel inflammation in this T cell-dependent model. Therefore, the objective of this study was to evaluate and compare small and large bowel inflammation induced by transfer of naïve T cells into two different immunodeficient recipient mice. T and B cell-deficient recombinase activating gene 1-deficient [RAG knockout (KO)] and T cell-deficient T cell receptor-β × T cell receptor-δ double-deficient (TCR KO) mice were reconstituted with wild-type naïve T cells and observed for signs of disease. We found that reconstituted RAG KO mice developed moderate to severe colitis and inflammation of the entire small intestine at 6–8 wk after T cell transfer. Adoptive transfer of naïve T cells into TCR KO mice induced a milder form of chronic colitis and small bowel inflammation that was confined primarily to the duodenum at 10–12 wk after T cell transfer. T helper cell 1 and macrophage-derived proinflammatory cytokine mRNA levels correlated well with the localization and severity of the chronic large and small bowel inflammation. In addition, we observed comparable homing and expansion of donor lymphocytes in the gut and secondary lymphoid tissues of both recipients. Taken together, our data demonstrate that transfer of naïve T cells into immunodeficient recipient mice induces both chronic small and large bowel inflammation and that the presence of B cells in the TCR KO recipients may play a role in regulating chronic intestinal inflammation.


2013 ◽  
Vol 305 (1) ◽  
pp. G35-G46 ◽  
Author(s):  
C. B. Larmonier ◽  
R.-M. T. McFadden ◽  
F. M. Hill ◽  
R. Schreiner ◽  
R. Ramalingam ◽  
...  

Decreased bone mineral density (BMD) represents an extraintestinal complication of inflammatory bowel disease (IBD). Vitamin D3 has been considered a viable adjunctive therapy in IBD. However, vitamin D3 plays a pleiotropic role in bone modeling and regulates the bone formation-resorption balance, depending on the physiological environment, and supplementation during active IBD may have unintended consequences. We evaluated the effects of vitamin D3 supplementation during the active phase of disease on colonic inflammation, BMD, and bone metabolism in an adoptive IL-10−/− CD4+ T cell transfer model of chronic colitis. High-dose vitamin D3 supplementation for 12 days during established disease had negligible effects on mucosal inflammation. Plasma vitamin D3 metabolites correlated with diet, but not disease, status. Colitis significantly reduced BMD. High-dose vitamin D3 supplementation did not affect cortical bone but led to a further deterioration of trabecular bone morphology. In mice fed a high vitamin D3 diet, colitis more severely impacted bone formation markers (osteocalcin and bone alkaline phosphatase) and increased bone resorption markers, ratio of receptor activator of NF-κB ligand to osteoprotegrin transcript, plasma osteoprotegrin level, and the osteoclast activation marker tartrate-resistant acid phosphatase (ACp5). Bone vitamin D receptor expression was increased in mice with chronic colitis, especially in the high vitamin D3 group. Our data suggest that vitamin D3, at a dose that does not improve inflammation, has no beneficial effects on bone metabolism and density during active colitis or may adversely affect BMD and bone turnover. These observations should be taken into consideration in the planning of further clinical studies with high-dose vitamin D3 supplementation in patients with active IBD.


2017 ◽  
Vol 152 (5) ◽  
pp. S615
Author(s):  
Rachel Mak'Anyengo ◽  
Peter Duewell ◽  
Hans Anton Lehr ◽  
Sandra Fischer ◽  
Thomas Clavel ◽  
...  

2014 ◽  
Vol 20 ◽  
pp. S95
Author(s):  
Reinoso W. Cynthia ◽  
Koboziev Iurii ◽  
Furr Kathryn ◽  
Phillips Caleb ◽  
Kottapalli K. Rao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document