Separation of fine waste catalyst particles from methanol-to-olefin quench water via swirl regenerating micro-channel separation (SRMS): A pilot-scale study

Author(s):  
Jianqi Chen ◽  
Lu Wang ◽  
Shihao Ma ◽  
Yujie Ji ◽  
Bing Liu ◽  
...  
Author(s):  
Seok Ho Yoon ◽  
Dong-Wook Oh ◽  
Young Kim ◽  
Jun Seok Choi

The heat exchangers using micro channel structure have been studied due to its high efficiency and compactness. If the micro channel heat exchanger is applied to the natural gas liquefaction process, the efficiency of LNG plant can be improved. In this study, the micro channel was fabricated by chemical etching and the heat exchanger core was made by the diffusion bonding method for cryogenic reliability. For applying to the large scale plant such as LNG plant, the pilot-scale thermal performance test setup of the heat exchanger was built. Tests can be performed in the cryogenic environment. The working fluid is cryogenic nitrogen gas. Two different temperature level of nitrogen gas was made by vaporizing from liquid nitrogen. And these fluids exchange the heat through the micro channel heat exchanger. Test rig is an open loop. Therefore nitrogen gas is discharged to the ambient. Temperatures are measured by RTD sensors. Inlet pressures of heat exchanger are measured by the cryogenic pressure transducer and pressure differences of heat exchanger are measured by the differential pressure transmitters. And all the measured data is acquired by DAQ module and saved into PC. The heat transfer coefficients of the micro channel heat exchanger are calculated and the heat transfer characteristics are investigated. And the test result was compared with the existing heat transfer correlations. And the modified heat transfer correlation of the micro channel heat exchanger in the cryogenic environment is suggested.


TAPPI Journal ◽  
2019 ◽  
Vol 18 (8) ◽  
Author(s):  
JANI LEHMONEN ◽  
TIMO RANTANEN ◽  
KARITA KINNUNEN-RAUDASKOSKI

The need for production cost savings and changes in the global paper and board industry during recent years have been constants. Changes in the global paper and board industry during past years have increased the need for more cost-efficient processes and production technologies. It is known that in paper and board production, foam typically leads to problems in the process rather than improvements in production efficiency. Foam forming technology, where foam is used as a carrier phase and a flowing medium, exploits the properties of dispersive foam. In this study, the possibility of applying foam forming technology to paper applications was investigated using a pilot scale paper forming environment modified for foam forming from conventional water forming. According to the results, the shape of jet-to-wire ratios was the same in both forming methods, but in the case of foam forming, the achieved scale of jet-to-wire ratio and MD/CD-ratio were wider and not behaving sensitively to shear changes in the forming section as a water forming process would. This kind of behavior would be beneficial when upscaling foam technology to the production scale. The dryness results after the forming section indicated the improvement in dewatering, especially when foam density was at the lowest level (i.e., air content was at the highest level). In addition, the dryness results after the pressing section indicated a faster increase in the dryness level as a function of foam density, with all density levels compared to the corresponding water formed sheets. According to the study, the bonding level of water- and foam-laid structures were at the same level when the highest wet pressing value was applied. The results of the study show that the strength loss often associated with foam forming can be compensated for successfully through wet pressing.


TAPPI Journal ◽  
2009 ◽  
Vol 8 (3) ◽  
pp. 14-20 ◽  
Author(s):  
YUAN-SHING PERNG ◽  
EUGENE I-CHEN WANG ◽  
SHIH-TSUNG YU ◽  
AN-YI CHANG

Trends toward closure of white water recirculation loops in papermaking often lead to a need for system modifications. We conducted a pilot-scale study using pulsed electrocoagulation technology to treat the effluent of an old corrugated containerboard (OCC)-based paper mill in order to evaluate its treatment performance. The operating variables were a current density of 0–240 A/m2, a hydraulic retention time (HRT) of 8–16 min, and a coagulant (anionic polyacrylamide) dosage of 0–22 mg/L. Water quality indicators investigated were electrical con-ductivity, suspended solids (SS), chemical oxygen demand (COD), and true color. The results were encouraging. Under the operating conditions without coagulant addition, the highest removals for conductivity, SS, COD, and true color were 39.8%, 85.7%, 70.5%, and 97.1%, respectively (with an HRT of 16 min). The use of a coagulant enhanced the removal of both conductivity and COD. With an optimal dosage of 20 mg/L and a shortened HRT of 10 min, the highest removal achieved for the four water quality indicators were 37.7%, 88.7%, 74.2%, and 91.7%, respectively. The water qualities thus attained should be adequate to allow reuse of a substantial portion of the treated effluent as process water makeup in papermaking.


TAPPI Journal ◽  
2010 ◽  
Vol 9 (6) ◽  
pp. 24-30 ◽  
Author(s):  
NIKLAS BERGLIN ◽  
PER TOMANI ◽  
HASSAN SALMAN ◽  
SOLVIE HERSTAD SVÄRD ◽  
LARS-ERIK ÅMAND

Processes have been developed to produce a solid biofuel with high energy density and low ash content from kraft lignin precipitated from black liquor. Pilot-scale tests of the lignin biofuel were carried out with a 150 kW powder burner and a 12 MW circulating fluidized bed (CFB) boiler. Lignin powder could be fired in a powder burner with good combustion performance after some trimming of the air flows to reduce swirl. Lignin dried to 10% moisture content was easy to feed smoothly and had less bridging tendencies in the feeding system than did wood/bark powder. In the CFB boiler, lignin was easily handled and cofired together with bark. Although the filter cake was broken into smaller pieces and fines, the combustion was not disturbed. When cofiring lignin with bark, the sulfur emission increased compared with bark firing only, but most of the sulfur was captured by calcium in the bark ash. Conventional sulfur capture also occurred with addition of limestone to the bed. The sulfur content in the lignin had a significantly positive effect on reducing the alkali chloride content in the deposits, thus reducing the high temperature corrosion risk.


Author(s):  
E. Harbers ◽  
D. van der Plas ◽  
A. Richardson ◽  
K. Subramanian
Keyword(s):  

2012 ◽  
Vol 132 (7) ◽  
pp. 203-211 ◽  
Author(s):  
Ichiro Okuda ◽  
Tomohito Takubo ◽  
Yasushi Mae ◽  
Kenichi Ohara ◽  
Fumihito Arai ◽  
...  
Keyword(s):  

2009 ◽  
Vol 129 (12) ◽  
pp. 461-468
Author(s):  
Keishi Sakuma ◽  
Kohro Takahashi

Sign in / Sign up

Export Citation Format

Share Document