fringe fields
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 7)

H-INDEX

10
(FIVE YEARS 1)

2022 ◽  
pp. 161-182
Author(s):  
Hermann Wollnik
Keyword(s):  

Author(s):  
Paul Bertier ◽  
Brianna Heazlewood

Abstract External fields have been widely adopted to control and manipulate the properties of gas-phase molecular species. In particular, electric fields have been shown to focus, filter and decelerate beams of polar molecules. While there are several well-established approaches for controlling the velocity and quantum-state distribution of reactant molecules, very few of these methods have examined the orientation of molecules in the resulting beam. Here we show that a buffer gas cell and three-bend electrostatic guide (coupled to a time-of-flight set-up) can be configured such that 70% of ammonia molecules in the cold molecular beam are oriented to an external electric field at the point of detection. With a minor alteration to the set-up, an approximately statistical distribution of molecular orientation is seen. These observations are explained by simulations of the electric field in the vicinity of the mesh separating the quadrupole guide and the repeller plate. The combined experimental apparatus therefore offers control over three key properties of a molecular beam: the rotational state distribution, the beam velocity, and the molecular orientation. Exerting this level of control over the properties of a molecular beam opens up exciting prospects for our ability to understand what role each parameter plays in reaction studies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A. Sander ◽  
G. Orfila ◽  
D. Sanchez-Manzano ◽  
N. Reyren ◽  
M. A. Mawass ◽  
...  

AbstractResearch on proximity effects in superconductor/ferromagnetic hybrids has most often focused on how superconducting properties are affected—and can be controlled—by the effects of the ferromagnet’s exchange or magnetic fringe fields. The opposite, namely the possibility to craft, tailor and stabilize the magnetic texture in a ferromagnet by exploiting superconducting effects, has been more seldom explored. Here we show that the magnetic flux trapped in high-temperature superconducting YBa2Cu3O7-δ microstructures can be used to modify the magnetic reversal of a hard ferromagnet—a cobalt/platinum multilayer with perpendicular magnetic anisotropy—and to imprint unusual magnetic domain distributions in a controlled manner via the magnetic field history. The domain distributions imprinted in the superconducting state remain stable, in absence of an external magnetic field, even after increasing the temperature well above the superconducting critical temperature, at variance to what has been observed for soft ferromagnets with in-plane magnetic anisotropy. This opens the possibility of having non-trivial magnetic configuration textures at room temperature after being tailored below the superconducting transition temperature. The observed effects are well explained by micromagnetic simulations that demonstrate the role played by the magnetic field from the superconductor on the nucleation, propagation, and stabilization of magnetic domains.


Author(s):  
Yuki Shimizu

AbstractLaser interference lithography is an attractive method for the fabrication of a large-area two-dimensional planar scale grating, which can be employed as a scale for multi-axis optical encoders or a diffractive optical element in many types of optical sensors. Especially, optical configurations such as Lloyd’s mirror interferometer based on the division of wavefront method can generate interference fringe fields for the patterning of grating pattern structures at a single exposure in a stable manner. For the fabrication of a two-dimensional scale grating to be used in a planar/surface encoder, an orthogonal two-axis Lloyd’s mirror interferometer, which has been realized through innovation to Lloyd’s mirror interferometer, has been developed. In addition, the concept of the patterning of the two-dimensional orthogonal pattern structure at a single exposure has been extended to the non-orthogonal two-axis Lloyd’s mirror interferometer. Furthermore, the optical setup for the non-orthogonal two-axis Lloyd’s mirror interferometer has been optimized for the fabrication of a large-area scale grating. In this review article, principles of generating interference fringe fields for the fabrication of a scale grating based on the interference lithography are reviewed, while focusing on the fabrication of a two-dimensional scale grating for planar/surface encoders. Verification of the pitch of the fabricated pattern structures, whose accuracy strongly affects the performance of planar/surface encoders, is also an important task to be addressed. In this paper, major methods for the evaluation of a grating pitch are also reviewed.


2019 ◽  
Vol 34 (36) ◽  
pp. 1942033
Author(s):  
D. A. Tarazona ◽  
M. Berz ◽  
K. Makino ◽  
D. Stratakis ◽  
M. J. Syphers

The Muon Campus at Fermilab is a system through which muons are delivered to the storage ring of the Muon [Formula: see text] Experiment (E989). It consists of a set of 1 km beamlines that transport and prepare a highly polarized muon beam out of secondaries produced downstream a target station. Realistic simulations of this beam delivery system (BDS) using COSY INFINITY, and presented here, contribute to the understanding and characterization of the muon beam production in relation to the statistical and systematic uncertainties of the E989 measurement, intended to be smaller than 0.14 parts per million to achieve the goals of the experiment. The impact of nonlinearities from fringe fields and high-order contributions on the BDS performance are presented, as well as detailed studies of the interactions between secondaries and the beamline elements apertures, particle decay channels, spin dynamics and beamline misalignments.


2019 ◽  
Vol 34 (36) ◽  
pp. 1942041 ◽  
Author(s):  
Eremey Valetov ◽  
Martin Berz ◽  
Kyoko Makino

We developed a highly accurate and fully Maxwellian conformal mapping method for calculation of main fields of electrostatic particle optical elements. A remarkable advantage of this method is the possibility of rapid recalculations with geometric asymmetries and mispowered plates. We used this conformal mapping method to calculate the multipole terms of the high voltage quadrupoles in the storage ring of the Muon [Formula: see text] Experiment (FNAL-E-0989). Next, we demonstrate that an effect where the observed tunes correspond to a voltage that is about [Formula: see text] higher compared to the voltage to which the Muon [Formula: see text] quadrupoles are set is explained by the conceptual and quantitative differences between the beam optics quadrupole voltage and the quadrupole voltage at the plates. Completing the methodological framework for field computations, we present a method for extracting multipole strength falloffs of a particle optical element from a set of Fourier mode falloffs. We calculated the quadrupole strength falloff and its effective field boundary (EFB) for the Muon [Formula: see text] quadrupole, which has explained the experimentally measured tunes, while simple estimates based on a linear model exhibited discrepancies up to [Formula: see text].


2019 ◽  
Vol 34 (36) ◽  
pp. 1942008 ◽  
Author(s):  
D. A. Tarazona ◽  
M. Berz ◽  
K. Makino

The Muon [Formula: see text] Experiment at Fermilab (E989) is directed toward measuring the muon magnetic anomaly, [Formula: see text], with total statistical and systematic errors of 0.14 ppm. This new measurement will serve as strong probe of effects of as yet undiscovered particles beyond the Standard Model (SM), and perhaps validate or disprove other theoretical models beyond the SM. Of special interest is the reduction of muon losses from the storage ring to achieve the precision needed at the Muon [Formula: see text] Experiment. For this purpose, we have developed a detailed and precise symplectic model of the Muon [Formula: see text] Storage Ring using COSY INFINITY that considers measured inhomogeneities of the magnetic field; high-order representation of the Electrostatic Quadrupole System (EQS) electrostatic field at different stages of the experiment including fringe fields; injection to the ring based on measurements; and beam collimation. Specifically, we have performed numerical analyses of the rate of muons that are lost before they have a chance to decay for several possible configurations of the EQS in order to find the best possible scenarios that minimize muon losses and understand the resonance mechanisms that contribute to betatron and possibly spin resonances. Additionally, comparisons with measurements have permitted the determination of whether observed resonances come from anticipated features of the [Formula: see text] storage ring or from unexpected sources of error whose effect could be detrimental to the precision of E989.


Author(s):  
Mark Pallay ◽  
Shahrzad Towfighian

Parametric resonances in a repulsive-force MEMS resonator are investigated. The repulsive force is generated through electrostatic fringe fields that arise from a specific electrode configuration. Because of the nature of the electrostatic force, parametric resonance occurs in this system and is predicted using Mathieu’s Equation. Governing equations of motion are solved using numerical shooting techniques and show both parametric and subharmonic resonance at twice the natural frequency. The primary instability tongue for parametric resonance is also mapped. This is of particular interest for MEMS sensors that require high signal-to-noise ratios due to the large oscillation amplitudes associated with parametric resonance.


Sign in / Sign up

Export Citation Format

Share Document