scholarly journals Emission of energetic neutral atoms measured on the lunar surface by Chang’E-4

2020 ◽  
Vol 189 ◽  
pp. 104970 ◽  
Author(s):  
Aibing Zhang ◽  
Martin Wieser ◽  
Chi Wang ◽  
Stas Barabash ◽  
Wenjing Wang ◽  
...  
2020 ◽  
Author(s):  
Martin Wieser ◽  
Stas Barabash ◽  
Xiao-Dong Wang ◽  
Aibing Zhang ◽  
Chi Wang ◽  
...  

<p>A fraction of up to 20% of the solar wind impinging onto the lunar surface is reflected as energetic neutral atoms back to space, as established by remote sensing, e.g. by the SARA instrument on Chandrayaan-1 or by IBEX. Mapping of these reflected energetic neutral atoms to the surface opened a new way to remotely study the solar wind precipitation onto the surface. However, the high reflection rate remained an enigma given the high porosity of the lunar regolith, but no measurements directly on the surface were available.</p><p>With the Advanced Small Analyzer for Neutrals (ASAN) mounted on the Yuyu-2 the rover of Chang'E-4, for the first time measurements of the energetic neutral atom flux originating from the lunar surface were preformed directly on the lunar surface itself. ASAN measures with a single angular pixel the energy spectrum of energetic neutral atoms reflected or sputtered form the surface with coarse mass resolution. ASAN uses the mobility of the rover to cover different solar wind illumination angles and scattering angles from the surface.</p><p>Since the landing of Chang'E-4 in the Von Kármán crater on the lunar far side in January 2019, ASAN has spent more than one year on the lunar surface and performed typically two measurement sessions per lunar day with nominal performance.</p><p>We review the ASAN instrument status and operations; present energy and mass spectra of energetic neutral atoms backscattered and sputtered from the surface, and discuss sputtering yields observed during different observation sessions. We put these observations into context of earlier remote sensing data by the SARA instrument on Chandrayaan-1.</p>


2019 ◽  
Author(s):  
André Galli ◽  
Peter Wurz ◽  
Jens Kleimann ◽  
Horst Fichtner ◽  
Yoshifumi Futaana ◽  
...  

1998 ◽  
Vol 46 (9-10) ◽  
pp. 1349-1362 ◽  
Author(s):  
B.H. Mauk ◽  
S.M. Krimigis ◽  
D.G. Mitchell ◽  
E.C. Roelof ◽  
E.P. Keath ◽  
...  

2012 ◽  
Author(s):  
Jacob Heerikhuisen ◽  
Nikolai Pogorelov ◽  
Gary Zank

2018 ◽  
Vol 618 ◽  
pp. A26 ◽  
Author(s):  
A. Czechowski ◽  
M. Hilchenbach ◽  
K. C. Hsieh ◽  
M. Bzowski ◽  
S. Grzedzielski ◽  
...  

Context. From the year 1996 until now, High energy Suprathermal Time Of Flight sensor (HSTOF) on board Solar and Heliospheric Observatory (SOHO) has been measuring the heliospheric energetic neutral atoms (ENA) flux between ±17° from the ecliptic plane. At present it is the only ENA instrument with the energy range within that of Voyager LECP energetic ion measurements. The energetic ion density and thickness of the inner heliosheath along the Voyager 1 trajectory are now known, and the ENA flux in the HSTOF energy range coming from the Voyager 1 direction may be estimated. Aims. We use HSTOF ENA data and Voyager 1 energetic ion spectrum to compare the regions of the heliosheath observed by HSTOF and Voyager 1. Methods. We compared the HSTOF ENA flux data from the forward and flank sectors of the heliosphere observed in various time periods between the years 1996 and 2010 and calculated the predicted ENA flux from the Voyager 1 direction using the Voyager 1 LECP energetic ion spectrum and including the contributions of charge exchange with both neutral H and He atoms. Results. The ratio between the HSTOF ENA flux from the ecliptic longitude sector 210−300° (the LISM apex sector) for the period 1996−1997 to the estimated ENA flux from the Voyager 1 direction is ∼1.3, but decreases to ∼0.6 for the period 1996−2005 and ∼0.3 for 1998−2006. For the flank longitude sectors (120−210° and 300−30°), the ratio also tends to decrease with time from ∼0.6 for 1996−2005 to ∼0.2 for 2008−2010. We discuss implications of these results for the energetic ion distribution in the heliosheath and the structure of the heliosphere.


2010 ◽  
Author(s):  
M. Hilchenbach ◽  
R. Kallenbach ◽  
K. C. Hsieh ◽  
A. Czechowski ◽  
Jakobus le Roux ◽  
...  

2018 ◽  
Vol 152 ◽  
pp. 142-164 ◽  
Author(s):  
Slawa Kabanovic ◽  
Moritz Feyerabend ◽  
Sven Simon ◽  
Zachary Meeks ◽  
Veit Wulms

Sign in / Sign up

Export Citation Format

Share Document