heliospheric observatory
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 13)

H-INDEX

19
(FIVE YEARS 2)

2022 ◽  
Vol 2161 (1) ◽  
pp. 012037
Author(s):  
Abhijit Banerjee ◽  
Rina Bhattacharya

Abstract The very inquisition of the humanity always remains about its parent star of this planetary system. Scientists across the world are always egger to investigate the details of the phenomenon of the solar flares and coronal mass ejections (CMEs). There are some fundamental mysteries related to the solar coronal heating along with the acceleration of the solar wind and energetic particles. In this context we have discussed on the solar radio signal data obtained from the Parker Solar Probe (PSP) mission of National Aeronautics and Space Administration (NASA), USA in course of its journey towards the Sun and the very recent data of Solar and Heliospheric Observatory (SOHO) space probe of European Space Agency (ESA) and NASA. In this work the simultaneous and periodical analysis of the data from the SOHO and PSP will light into the delicate features of the near and far Earth observations on the solar coronal mass ejections related dynamics and that reveals some interesting facts in relation to the solar magnetic field.


Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 507
Author(s):  
Daniele Telloni

The large-scale configuration of the UV solar corona at the minimum activity between solar cycles 22 and 23 is explored in this paper. Exploiting a large sample of spectroscopic observations acquired by the Ultraviolet Coronagraph Spectrometer aboard the Solar and Heliospheric Observatory in the two-year period of 1996–1997, this work provides the first-ever monochromatic O vi 1032 Å image of the extended corona, and the first-ever two-dimensional maps of the kinetic temperature of oxygen ions and the O vi 1037/1032 Å doublet intensity ratio (a proxy for the outflow velocity of the oxygen component of the solar wind), statistically representative of solar minimum conditions. A clear dipolar magnetic structure, both equator- and axis-symmetric, is distinctly shown to shape the solar minimum corona, both in UV emission and in temperature and expansion rate. This statistical approach allows for robust establishment of the key role played by the magnetic field divergence in modulating the speed and temperature of the coronal flows, and identification of the coronal sources of the fast and slow solar wind.


2021 ◽  
Vol 257 (2) ◽  
pp. 33
Author(s):  
Kashvi Mundra ◽  
V. Aparna ◽  
Petrus Martens

Abstract There have been a few previous studies claiming that the effects of geomagnetic storms strongly depend on the orientation of the magnetic cloud portion of coronal mass ejections (CMEs). Aparna & Martens, using halo-CME data from 2007 to 2017, showed that the magnetic field orientation of filaments at the location where CMEs originate on the Sun can be used to credibly predict the geoeffectiveness of the CMEs being studied. The purpose of this study is to extend their survey by analyzing the halo-CME data for 1996–2006. The correlation of filament axial direction on the solar surface and the corresponding Bz signatures at L1 are used to form a more extensive analysis for the results previously presented by Aparna & Martens. This study utilizes Solar and Heliospheric Observatory Extreme-ultraviolet Imaging Telescope 195 Å, Michelson Doppler Imager magnetogram images, and Kanzelhöhe Solar Observatory and Big Bear Solar Observatory Hα images for each particular time period, along with ACE data for interplanetary magnetic field signatures. Utilizing all these, we have found that the trend in Aparna & Martens’ study of a high likelihood of correlation between the axial field direction on the solar surface and Bz orientation persists for the data between 1996 and 2006, for which we find a match percentage of 65%.


Author(s):  
Rolf Bütikofer ◽  
Patrick Kühl ◽  
Athanasios Papaioannou

The Electron Proton Helium Instrument (EPHIN) aboard the Solar Heliospheric Observatory (SOHO) observed several SEP events with protons accelerated to energies E>500 MeV, whereas no neutron monitor (NM) of the worldwide network showed a significant increase in their counting rate. For instance, the SEP event on 8 November 2000 with maximum proton intensity at 500 MeV of >0.1 (cm2 s sr MeV)-1 is outstanding, as this maximum pro-ton flux is comparable with the GLEs on 14 July 2000 and on 15 April 2001 (max. count rate increase in 5-min data of 225% at South Pole NM). In a first step we applied a forward modelling approach of the SEP event on 8 November 2000, i.e. we computed the expected NM count rate increases for selected NM stations, utilizing as input para-meters the SEP spectra determined from EPHIN data as well as anticipated pitch angle distribution and apparent source direction. The simulated count rate increases for selected NM stations showed that this SEP event should have be seen as a clear GLE. To further understand this situation, we investigated in a next step recent GLEs and sub-GLEs. Consequently, a total of four SEP events were selected, two clearly identified GLEs and two sub-GLEs. We performed a “GLE analysis” based on the data of the worldwide network of NMs for each of the four SEP events and then compared the derived SEP spectra with the proton spectra as determined from EPHIN measurements.


Author(s):  
Nicolas Poirier ◽  
Alexis P. Rouillard ◽  
Athanasios Kouloumvakos ◽  
Alexis Przybylak ◽  
Naïs Fargette ◽  
...  

The Solar Orbiter (SolO) and Parker Solar Probe missions have opened up new challenges for the heliospheric scientific community. Their proximity to the Sun and their high quality measurements allow us to investigate, for the first time, potential sources for the solar wind plasma measured in situ. More accurate estimates of magnetic connectivities from spacecraft to the Sun are required to support science and operations for these missions. We present a methodology to systematically compare coronal and heliospheric models against white-light (WL) observations. WL images from the SOlar and Heliospheric Observatory (SoHO) are processed to unveil the faint structures of the K-corona. Images are then concatenated over time and are projected into a Carrington synoptic map. Features of interest such as the Streamer Belt (SB) are reduced to simplified geometric objects. Finally, a metric is defined to rank models according to their performance against WL observations. The method has been exploited to reproduce magnetic sectors from WL observations. We tested our results against one year of in situ magnetic polarity measurements taken at near one AU from the Advanced Composition Explorer (ACE) and the Solar TErrestrial RElations Observatory (STEREO-A). We obtained a good correlation that emphasizes the relevance of using WL observations to infer the shape of the sector structure. We show that WL observations provide additional constraints to better select model parameters such as the input photospheric magnetic map. We highlight the capability of this technique to systematically optimize coronal and heliospheric models using continuous and near-real-time WL observations. Several relevant practical applications are discussed, which should allow us to improve connectivity estimates.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
W. Finsterle ◽  
J. P. Montillet ◽  
W. Schmutz ◽  
R. Šikonja ◽  
L. Kolar ◽  
...  

AbstractVarious space missions have measured the total solar irradiance (TSI) since 1978. Among them the experiments Precision Monitoring of Solar Variability (PREMOS) on the PICARD satellite (2010–2014) and the Variability of Irradiance and Gravity Oscillations (VIRGO) on the mission Solar and Heliospheric Observatory, which started in 1996 and is still operational. Like most TSI experiments, they employ a dual-channel approach with different exposure rates to track and correct the inevitable degradation of their radiometers. Until now, the process of degradation correction has been mostly a manual process based on assumed knowledge of the sensor hardware. Here we present a new data-driven process to assess and correct instrument degradation using a machine-learning and data fusion algorithm, that does not require deep knowledge of the sensor hardware. We apply the algorithm to the TSI records of PREMOS and VIRGO and compare the results to the previously published results. The data fusion part of the algorithm can also be used to combine data from different instruments and missions into a composite time series. Based on the fusion of the degradation-corrected VIRGO/PMO6 and VIRGO/DIARAD time series, we find no significant change (i.e $$-0.17\pm 0.29$$ - 0.17 ± 0.29  W/m$$^2$$ 2 ) between the TSI levels during the two most recent solar minima in 2008/09 and 2019/20. The new algorithm can be applied to any TSI experiment that employs a multi-channel philosophy for degradation tracking. It does not require deep technical knowledge of the individual radiometers.


Solar Physics ◽  
2021 ◽  
Vol 296 (1) ◽  
Author(s):  
N. Gopalswamy ◽  
J. Newmark ◽  
S. Yashiro ◽  
P. Mäkelä ◽  
N. Reginald ◽  
...  

AbstractWe report on the Balloon-borne Investigation of Temperature and Speed of Electrons in the corona (BITSE) mission launched recently to observe the solar corona from $\approx 3$ ≈ 3  Rs to 15 Rs at four wavelengths (393.5, 405.0, 398.7, and 423.4 nm). The BITSE instrument is an externally occulted single stage coronagraph developed at NASA’s Goddard Space Flight Center in collaboration with the Korea Astronomy and Space Science Institute (KASI). BITSE used a polarization camera that provided polarization and total brightness images of size $1024 \times 1024$ 1024 × 1024 pixels. The Wallops Arc Second Pointer (WASP) system developed at NASA’s Wallops Flight Facility (WFF) was used for Sun pointing. The coronagraph and WASP were mounted on a gondola provided by WFF and launched from the Fort Sumner, New Mexico station of Columbia Scientific Balloon Facility (CSBF) on September 18, 2019. BITSE obtained 17,060 coronal images at a float altitude of $\approx \mbox{128,000}$ ≈ 128,000 feet ($\approx 39$ ≈ 39  km) over a period of $\approx 4$ ≈ 4  hrs. BITSE flight software was based on NASA’s core Flight System, which was designed to help develop flight quality software. We used EVTM (Ethernet Via Telemetry) to download science data during operations; all images were stored on board using flash storage. At the end of the mission, all data were recovered and analyzed. Preliminary analysis shows that BITSE imaged the solar minimum corona with the equatorial streamers on the east and west limbs. The narrow streamers observed by BITSE are in good agreement with the geometric properties obtained by the Solar and Heliospheric Observatory (SOHO) coronagraphs in the overlapping physical domain. In spite of the small signal-to-noise ratio ($\approx 14$ ≈ 14 ) we were able to obtain the temperature and flow speed of the western steamer. In the heliocentric distance range 4 – 7 Rs on the western streamer, we obtained a temperature of $\approx 1.0\pm 0.3$ ≈ 1.0 ± 0.3  MK and a flow speed of $\approx 260$ ≈ 260  km s−1 with a large uncertainty interval.


Author(s):  
Filip Arnaut ◽  
Dejan Vuckovic ◽  
Ivana Vasiljevic ◽  
Vesna Cvetkov

The Solar Heliospheric Observatory (SOHO) satellite was launched on the 2nd of December 1995 at L1 Lagrange point (1.5x106 km from Earth) with the purpose of gathering data for helioseismology, remote sensing of the solar atmosphere, and solar wind in situ. The satellite was positioned into orbit in early 1996, with data acquisition expected to commence on January 20th. The correlation between increased values of solar wind parameters and earthquakes in the Balkan peninsula zone between 1996 and 2018 was made possible by data obtained through continuous proton density and proton velocity monitoring. The assessment of the anomalous threshold was based on statistically determined parameters due to the huge fluctuation of solar wind over time and distinct value increases of proton density and speed. Visual representations of proton density and proton speed were created for the time window preceding each earthquake after defining the boundary between normal and anomalous values. According to the chart analysis, increased proton density occurred in 40 of the 50 cases observed, whereas increased proton velocity appeared in 28 of the 50 cases. Using hypergeometrical probability and an unbiased test with randomly generated parameters, the discovered correlation was statistically verified. A retrospective selection bias analysis is also provided in the research paper.


2020 ◽  
Vol 642 ◽  
pp. A112
Author(s):  
A. Kepa ◽  
R. Falewicz ◽  
M. Siarkowski ◽  
M. Pietras

Context. Soft X-ray spectra (3.33 Å–6.15 Å) from the RESIK instrument on CORONAS-F constitute a unique database for the study of the physical conditions of solar flare plasmas, enabling the calculation of differential emission measures. The two RESIK channels for the shortest wavelengths overlap with the lower end of the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) spectral energy range, which is located around 3 keV, making it possible to compare both data sets. Aims. We aim to compare observations from RESIK and RHESSI spectrometers and cross-correlate these instruments. Observations are compared with synthetic spectra calculated based on the results of one-dimensional hydrodynamical (1D-HD) modelling. The analysis was performed for the flare on 20 September 2002 (SOL2002-09-20T09:28). Methods. We estimated the geometry of the flaring loop, necessary for 1D-HD modelling, based on images from RHESSI and the Extreme-Ultraviolet Imaging Telescope aboard the Solar and Heliospheric Observatory. The distribution of non-thermal electrons (NTEs) was determined from RHESSI spectra. The 1D-HD model assumes that non-thermal electrons with a power-law spectrum were injected at the apex of the flaring loop. The NTEs then heat and evaporate the chromosphere, filling the loop with hot and dense plasma radiating in soft X-rays. The total energy of electrons was constrained by comparing observed and calculated fluxes from Geostationary Operational Environmental Satellite 1–8 Å data. We determined the temperature and density at every point of the flaring loop throughout the evolution of the flare, calculating the resulting X-ray spectra. Results. The synthetic spectra calculated based on the results of hydrodynamic modelling for the 20 September 2002 flare are consistent within a factor of two with the observed RESIK spectra during most of the duration of the flare. This discrepancy factor is probably related to the uncertainty on the cross-calibration between RESIK and RHESSI instruments.


2020 ◽  
Vol 639 ◽  
pp. A68
Author(s):  
Anitha Ravishankar ◽  
Grzegorz Michałek ◽  
Seiji Yashiro

In this paper we present a statistical study of the kinematics of 28894 coronal mass ejections (CMEs) recorded by the Large Angle and Spectrometric Coronagraph (LASCO) on board the Solar and Heliospheric Observatory spacecraft from 1996 until mid-2017. The initial acceleration phase is characterized by a rapid increase in CME velocity just after eruption in the inner corona. This phase is followed by a non-significant residual acceleration (deceleration) characterized by an almost constant speed of CMEs. We demonstrate that the initial acceleration is in the range 0.24–2616 m s−2 with median (average) value of 57 m s−2 (34 m s−2) and it takes place up to a distance of about 28 RSUN with median (average) value of 7.8 RSUN (6 RSUN). Additionally, the initial acceleration is significant in the case of fast CMEs (V >  900 km s−1), where the median (average) values are about 295 m s−2 (251 m s−2), respectively, and much weaker in the case of slow CMEs (V <  250 km s−1), where the median (average) values are about 18 m s−2 (17 m s−2), respectively. We note that the significant driving force (Lorentz force) can operate up to a distance of 6 RSUN from the Sun during the first 2 hours of propagation. We found a significant anti-correlation between the initial acceleration magnitude and the acceleration duration, whereas the residual acceleration covers a range from −1224 to 0 m s−2 with a median (average) value of −34 m s−2 (−17 m s−2). One intriguing finding is that the residual acceleration is much smaller during the 24th cycle in comparison to the 23rd cycle of solar activity. Our study has also revealed that the considered parameters, initial acceleration (ACCINI), residual acceleration (ACCRES), maximum velocity (VMAX), and time at maximum velocity (TimeMAX) mostly follow solar cycles and the intensities of the individual cycle.


Sign in / Sign up

Export Citation Format

Share Document