Effect of methylphenidate on Stroop Color–Word task performance in children with attention deficit hyperactivity disorder

2006 ◽  
Vol 141 (3) ◽  
pp. 315-320 ◽  
Author(s):  
Daniel D. Langleben ◽  
John Monterosso ◽  
Igor Elman ◽  
Brian Ash ◽  
Gary Krikorian ◽  
...  
2019 ◽  
Vol 33 (3) ◽  
pp. 425-444 ◽  
Author(s):  
Connor H. G. Patros ◽  
Stephanie J. Tarle ◽  
R. Matt Alderson ◽  
Sarah E. Lea ◽  
Elaine F. Arrington

2005 ◽  
Vol 15 (4) ◽  
pp. 664-670 ◽  
Author(s):  
Stephen V. Faraone ◽  
Joseph Biederman ◽  
Thomas Spencer ◽  
David Michelson ◽  
Lenard Adler ◽  
...  

2015 ◽  
Vol 45 (15) ◽  
pp. 3159-3170 ◽  
Author(s):  
D. van Rooij ◽  
P. J. Hoekstra ◽  
J. Bralten ◽  
M. Hakobjan ◽  
J. Oosterlaan ◽  
...  

Background.Impairment of response inhibition has been implicated in attention-deficit/hyperactivity disorder (ADHD). Dopamine neurotransmission has been linked to the behavioural and neural correlates of response inhibition. The current study aimed to investigate the relationship of polymorphisms in two dopamine-related genes, the catechol-O-methyltransferase gene (COMT) and the dopamine transporter gene (SLC6A3 or DAT1), with the neural and behavioural correlates of response inhibition.Method.Behavioural and neural measures of response inhibition were obtained in 185 adolescents with ADHD, 111 of their unaffected siblings and 124 healthy controls (mean age 16.9 years). We investigated the association of DAT1 and COMT variants on task performance and whole-brain neural activation during response inhibition in a hypothesis-free manner. Additionally, we attempted to explain variance in previously found ADHD effects on neural activation during response inhibition using these DAT1 and COMT polymorphisms.Results.The whole-brain analyses demonstrated large-scale neural activation changes in the medial and lateral prefrontal, subcortical and parietal regions of the response inhibition network in relation to DAT1 and COMT polymorphisms. Although these neural activation changes were associated with different task performance measures, no relationship was found between DAT1 or COMT variants and ADHD, nor did variants in these genes explain variance in the effects of ADHD on neural activation.Conclusions.These results suggest that dopamine-related genes play a role in the neurobiology of response inhibition. The limited associations between gene polymorphisms and task performance further indicate the added value of neural measures in linking genetic factors and behavioural measures.


Sign in / Sign up

Export Citation Format

Share Document