scholarly journals A CFD modeling of oil-water flow in pipeline: Interaction analysis and identification of boundary separation

Author(s):  
Madjid Meriem-Benziane ◽  
Benyebka Bou-Saïd ◽  
Bekhit Abdelkader
2021 ◽  
Vol 9 (5) ◽  
pp. 481
Author(s):  
Azim Hosseini ◽  
Sasan Tavakoli ◽  
Abbas Dashtimanesh ◽  
Prasanta K. Sahoo ◽  
Mihkel Kõrgesaar

This paper presents CFD (Computational Fluid Dynamics) simulations of the performance of a planing hull in a calm-water condition, aiming to evaluate similarities and differences between results of different CFD models. The key differences between these models are the ways they use to compute the turbulent flow and simulate the motion of the vessel. The planing motion of a vessel on water leads to a strong turbulent fluid flow motion, and the movement of the vessel from its initial position can be relatively significant, which makes the simulation of the problem challenging. Two different frameworks including k-ε and DES (Detached Eddy Simulation) methods are employed to model the turbulence behavior of the fluid motion of the air–water flow around the boat. Vertical motions of the rigid solid body in the fluid domain, which eventually converge to steady linear and angular displacements, are numerically modeled by using two approaches, including morphing and overset techniques. All simulations are performed with a similar mesh structure which allows us to evaluate the differences between results of the applied mesh motions in terms of computation of turbulent air–water flow around the vessel. Through quantitative comparisons, the morphing technique has been seen to result in smaller errors in the prediction of the running trim angle at high speeds. Numerical observations suggest that a DES model can modify the accuracy of the morphing mesh simulations in the prediction of the trim angle, especially at high-speeds. The DES model has been seen to increase the accuracy of the model in the computation of the resistance of the vessel in a high-speed operation, as well. This better level of accuracy in the prediction of resistance is a result of the calculation of the turbulent eddies emerging in the water flow in the downstream zone, which are not captured when a k-ε framework is employed. The morphing approach itself can also increase the accuracy of the resistance prediction. The overset method, however, overpredicts the resistance force. This overprediction is caused by the larger vorticity, computed in the direction of the waves, generated under the bow of the vessel. Furthermore, the overset technique is observed to result in larger hydrodynamic pressure on the stagnation line, which is linked to the greater trim angle, predicted by this approach. The DES model is seen to result in extra-damping of the second and third crests of transom waves as it calculates the stronger eddies in the wake of the boat. Overall, a combination of the morphing and DES models is recommended to be used for CFD modeling of a planing hull at high-speeds. This combined CFD model might be relatively slower in terms of computational time, but it provides a greater level of accuracy in the performance prediction, and can predict the energy damping, developed in the surrounding water. Finally, the results of the present paper demonstrate that a better level of accuracy in the performance prediction of the vessel might also be achieved when an overset mesh motion is used. This can be attained in future by modifying the mesh structure in such a way that vorticity is not overpredicted and the generated eddies, emerging when a DES model is employed, are captured properly.


2021 ◽  
Vol 33 (3) ◽  
pp. 036601
Author(s):  
Dongxu Zhang ◽  
Liehui Zhang ◽  
Huiying Tang ◽  
Shuwu Yuan ◽  
Hui Wang ◽  
...  

2017 ◽  
Vol 149 ◽  
pp. 315-321 ◽  
Author(s):  
T. Al-Wahaibi ◽  
A. Abubakar ◽  
A.R. Al-Hashmi ◽  
Y. Al-Wahaibi ◽  
A. Al-Ajmi

2010 ◽  
Vol 240 (9) ◽  
pp. 2357-2364 ◽  
Author(s):  
Eckhard Krepper ◽  
Gregory Cartland-Glover ◽  
Alexander Grahn ◽  
Frank-Peter Weiss ◽  
Sören Alt ◽  
...  

2012 ◽  
Vol 90 (8) ◽  
pp. 1019-1030 ◽  
Author(s):  
N. Yusuf ◽  
Y. Al-Wahaibi ◽  
T. Al-Wahaibi ◽  
A. Al-Ajmi ◽  
A.S. Olawale ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document