Gross alpha determination in radioactive wastes from nuclear power plants using the track registration technique

2007 ◽  
Vol 42 (3) ◽  
pp. 449-456
Author(s):  
M.J. Suarez-Navarro ◽  
Ll. Pujol ◽  
J.A. Gonzalez-Gonzalez
Author(s):  
Makoto Kashiwagi ◽  
Hideki Masui ◽  
Yasutaka Denda ◽  
David James ◽  
Bertrand Lante`s ◽  
...  

Low- and intermediate-level radioactive wastes (L-ILW) generated at nuclear power plants are disposed of in various countries. In the disposal of such wastes, it is required that the radioactivity concentrations of waste packages should be declared with respect to difficult-to-measure nuclides (DTM nuclides), such as C-14, Ni-63 and α-emitting nuclides, which are often limited to maximum values in disposal licenses, safety cases and/or regulations for maximum radioactive concentrations. To fulfill this requirement, the Scaling Factor method (SF method) has been applied in various countries as a principal method for determining the concentrations of DTM nuclides. In the SF method, the concentrations of DTM nuclides are determined by multiplying the concentrations of certain key nuclides by SF values (the determined ratios of radioactive concentration between DTM nuclides and those key nuclides). The SF values used as conversion factors are determined from the correlation between DTM nuclides and key nuclides such as Co-60. The concentrations of key nuclides are determined by γ ray measurements which can be made comparatively easily from outside the waste package. The SF values are calculated based on the data obtained from the radiochemical analysis of waste samples. The use of SFs, which are empirically based on analytical data, has become established as a widely recognized “de facto standard”. A number of countries have independently collected nuclide data by analysis over many years and each has developed its own SF method, but all the SF methods that have been adopted are similar. The project team for standardization had been organized for establishing this SF method as a “de jure standard” in the international standardization system of the International Organization for Standardization (ISO). The project team for standardization has advanced the standardization through technical studies, based upon each country’s study results and analysis data. The conclusions reached by the project team was published as ISO International Standard 21238:2007 “The Scaling Factor method to determine the radioactivity of low- and intermediate-level radioactive waste packages generated at nuclear power plants” [1]. This paper gives an introduction to the international standardization process for the SF method and the contents of the recently published International Standard.


2019 ◽  
Vol 7 (2A) ◽  
Author(s):  
Roberto Pellacani Monteiro ◽  
Aluísio Souza Reis Junior ◽  
Geraldo Frederico Kastner ◽  
Eliane Silvia Codo Temba ◽  
Thiago César De Oliveira ◽  
...  

The aim of this work is to present radiochemical methodologies developed at CDTN/CNEN in order to answer a program for isotopic inventory of radioactive wastes from Brazilian Nuclear Power Plants.  In this program  some radionuclides, 3H, 14C, 55Fe, 59Ni, 63Ni, 90Sr, 93Zr, 94Nb, 99Tc, 129I, 235U, 238U, 238Pu, 239+240Pu, 241Pu, 242Pu, 241Am, 242Cm e 243+244Cm, were determined  in Low Level Wastes (LLW) and Intermediate Level Wastes (ILW) and a protocol of analytical methodologies based on radiochemical separation steps and spectrometric and nuclear techniques was stablished.


Atomic Energy ◽  
1997 ◽  
Vol 83 (1) ◽  
pp. 493-499 ◽  
Author(s):  
L. M. Sharygin ◽  
A. Yu. Muromskii ◽  
V. E. Moiseev ◽  
A. R. Tsekh ◽  
A. V. Vaver

Author(s):  
Anthony Shadrack ◽  
Chang-Lak Kim

The development of a lasting solution to radioactive waste management is a critical issue for future nuclear applications. When assessing radioactive waste disposal options factors such as volume of waste and sustainability of the plan must be considered. This paper describes basic plans for the disposal of Low- and intermediate-level radioactive wastes (LILW) expected to be generated from nuclear power plants for countries starting nuclear power program for the first time. The purpose of this paper was to develop a disposal option for Low- and intermediate level radioactive wastes for new comer countries planning to build at least two nuclear power units. A LILW disposal plan was developed by considering countries’ radioactive waste generation data from pressurized water nuclear reactors. An on-site storage facility of 1,000 m3 for LILW at NPPs sites for a period 10 years pending final disposal was recommended. It was concluded that storage and disposal processes are complementary with each other, therefore; both programs should be complemented for effective management and control of radioactive wastes. This study is important as an initial implementation of a national Low- and intermediate level wastes (LILW) disposal program for countries planning to build nuclear power plants for the first time.


Sign in / Sign up

Export Citation Format

Share Document