ISO Standardization of the Scaling Factor Method for Low- and Intermediate Level Radioactive Wastes Generated at Nuclear Power Plants

Author(s):  
Makoto Kashiwagi ◽  
Hideki Masui ◽  
Yasutaka Denda ◽  
David James ◽  
Bertrand Lante`s ◽  
...  

Low- and intermediate-level radioactive wastes (L-ILW) generated at nuclear power plants are disposed of in various countries. In the disposal of such wastes, it is required that the radioactivity concentrations of waste packages should be declared with respect to difficult-to-measure nuclides (DTM nuclides), such as C-14, Ni-63 and α-emitting nuclides, which are often limited to maximum values in disposal licenses, safety cases and/or regulations for maximum radioactive concentrations. To fulfill this requirement, the Scaling Factor method (SF method) has been applied in various countries as a principal method for determining the concentrations of DTM nuclides. In the SF method, the concentrations of DTM nuclides are determined by multiplying the concentrations of certain key nuclides by SF values (the determined ratios of radioactive concentration between DTM nuclides and those key nuclides). The SF values used as conversion factors are determined from the correlation between DTM nuclides and key nuclides such as Co-60. The concentrations of key nuclides are determined by γ ray measurements which can be made comparatively easily from outside the waste package. The SF values are calculated based on the data obtained from the radiochemical analysis of waste samples. The use of SFs, which are empirically based on analytical data, has become established as a widely recognized “de facto standard”. A number of countries have independently collected nuclide data by analysis over many years and each has developed its own SF method, but all the SF methods that have been adopted are similar. The project team for standardization had been organized for establishing this SF method as a “de jure standard” in the international standardization system of the International Organization for Standardization (ISO). The project team for standardization has advanced the standardization through technical studies, based upon each country’s study results and analysis data. The conclusions reached by the project team was published as ISO International Standard 21238:2007 “The Scaling Factor method to determine the radioactivity of low- and intermediate-level radioactive waste packages generated at nuclear power plants” [1]. This paper gives an introduction to the international standardization process for the SF method and the contents of the recently published International Standard.

Author(s):  
Makoto Kashiwagi ◽  
Mike Garamszeghy ◽  
Bertrand Lantès ◽  
Sébastien Bonne ◽  
Lucien Pillette-Cousin ◽  
...  

Disposal of low- and intermediate-level activated waste generated at nuclear power plants is being planned or carried out in many countries. The radioactivity concentrations and/or total quantities of long-lived, difficult-to-measure nuclides (DTM nuclides), such as C-14, Ni-63, Nb-94, α emitting nuclides etc., are often restricted by the safety case for a final repository as determined by each country’s safety regulations, and these concentrations or amounts are required to be known and declared. With respect to waste contaminated by contact with process water, the Scaling Factor method (SF method), which is empirically based on sampling and analysis data, has been applied as an important method for determining concentrations of DTM nuclides. This method was standardized by the International Organization for Standardization (ISO) and published in 2007 as ISO21238 “Scaling factor method to determine the radioactivity of low- and intermediate-level radioactive waste packages generated at nuclear power plants”. However, for activated metal waste with comparatively high concentrations of radioactivity, such as may be found in reactor control rods and internal structures, direct sampling and radiochemical analysis methods to evaluate the DTM nuclides are limited by access to the material and potentially high personnel radiation exposure. In this case, theoretical calculation methods in combination with empirical methods based on remote radiation surveys need to be used to best advantage for determining the disposal inventory of DTM nuclides while minimizing exposure to radiation workers. Pursuant to this objective a standard for the theoretical evaluation of the radioactivity concentration of DTM nuclides in activated waste, is in process through ISO TC85/SC5 (ISO Technical Committee 85: Nuclear energy, nuclear technologies, and radiological protection; Subcommittee 5: Nuclear fuel cycle). The project team for this ISO standard was formed in 2011 and is composed of experts from 11 countries. The project team has been conducting technical discussions on theoretical methods for determining concentrations of radioactivity, and has developed the draft International Standard of ISO16966 “Theoretical activation calculation method to evaluate the radioactivity of activated waste generated at nuclear reactors”. This paper describes the international standardization process developed by the ISO project team, and outlines the following two theoretical activity evaluation methods: — Point method — Range method


2019 ◽  
Vol 7 (2A) ◽  
Author(s):  
Roberto Pellacani Monteiro ◽  
Aluísio Souza Reis Junior ◽  
Geraldo Frederico Kastner ◽  
Eliane Silvia Codo Temba ◽  
Thiago César De Oliveira ◽  
...  

The aim of this work is to present radiochemical methodologies developed at CDTN/CNEN in order to answer a program for isotopic inventory of radioactive wastes from Brazilian Nuclear Power Plants.  In this program  some radionuclides, 3H, 14C, 55Fe, 59Ni, 63Ni, 90Sr, 93Zr, 94Nb, 99Tc, 129I, 235U, 238U, 238Pu, 239+240Pu, 241Pu, 242Pu, 241Am, 242Cm e 243+244Cm, were determined  in Low Level Wastes (LLW) and Intermediate Level Wastes (ILW) and a protocol of analytical methodologies based on radiochemical separation steps and spectrometric and nuclear techniques was stablished.


Author(s):  
Anthony Shadrack ◽  
Chang-Lak Kim

The development of a lasting solution to radioactive waste management is a critical issue for future nuclear applications. When assessing radioactive waste disposal options factors such as volume of waste and sustainability of the plan must be considered. This paper describes basic plans for the disposal of Low- and intermediate-level radioactive wastes (LILW) expected to be generated from nuclear power plants for countries starting nuclear power program for the first time. The purpose of this paper was to develop a disposal option for Low- and intermediate level radioactive wastes for new comer countries planning to build at least two nuclear power units. A LILW disposal plan was developed by considering countries’ radioactive waste generation data from pressurized water nuclear reactors. An on-site storage facility of 1,000 m3 for LILW at NPPs sites for a period 10 years pending final disposal was recommended. It was concluded that storage and disposal processes are complementary with each other, therefore; both programs should be complemented for effective management and control of radioactive wastes. This study is important as an initial implementation of a national Low- and intermediate level wastes (LILW) disposal program for countries planning to build nuclear power plants for the first time.


2020 ◽  
Vol 11 (2) ◽  
pp. 66-74
Author(s):  
A. A. Ekidin ◽  
◽  
K. L. Antonov ◽  

Generation of radioactive wastes (RW) is viewed a most urgent problem of radiation safety under normal operation of nuclear power plants (NPP). The paper demonstrates the application of a specifi c indicator (rate) of RW generation per unit of generated power (m3/GW·h) for a retrospective assessment and forecasting of RW generation volumes at Russian NPPs. Mean and median values of annual specifi c RW generation rates were calculated for each NPP based on published environmental reports of JSC Rosenergoatom Concern for the period of 2008—2018. Advantage of applying median values in retrospective and forecast assessments was shown. Medians for solid very low-level, low-level, intermediate-level and high-level radioactive waste amounted to 1.5·10−2 m3/GW·h, 3.3·10−2 m3/GW·h, 3.3·10−3 m3/GW·h and 2.8·10−4 m3/GW·h, respectively; for liquid low-level and intermediate-level waste these values accounted for 1.4·10−3 m3/GW·h, 2.5·10−3 m3/GW·h, respectively. NPPs with RBMK reactor units are characterized by the highest mean and median values of specifi c RW generation rates for all RW categories. Given various types of reactor facilities and their characteristic specifi c rates, retrospective estimates for the total volume of liquid RW was increased by 8 % and for solid RW — by 12 %. The forecast estimates based on specifi c rate medians, as well as on increased power generation planned for Russian NPPs indicates probable increase in RW generation volumes by 0.8—7.1 % (depending on waste category) from 2020 to 2027.


1985 ◽  
Vol 50 ◽  
Author(s):  
I. B. Plecas ◽  
Li. L. Mihajlovic ◽  
A. M. Kostadinovic

AbstractIn this paper an optimization of concrete container composition, used for storing low and intermediate level radioactive waste from nuclear power plants in Yugoslavia, is presented.Mechanical properties 37−52 MPa, permeability 1.07. 10−13 - 1.50. 10−11cm2 and leakage rate 3.66. 10−6 - 1.77. 10−4 cm/d for concrete made of commercial materials, were tested.


Sign in / Sign up

Export Citation Format

Share Document