scholarly journals Measurement of the cross sections for 238U(n, γ)239U reaction in the energy range of 14.1–14.8 MeV using neutron activation method

2018 ◽  
Vol 152 ◽  
pp. 125-128 ◽  
Author(s):  
Qiang Wang ◽  
Tong Liu ◽  
Yijia Qiu ◽  
Changlin Lan ◽  
Bingjun Chen ◽  
...  
1971 ◽  
Vol 30 (4) ◽  
pp. 446-451 ◽  
Author(s):  
M. A. Kurov ◽  
Yu. V. Ryabov ◽  
So Tong Hsik ◽  
N. Chikov ◽  
V. N. Kononov ◽  
...  

1964 ◽  
Vol 16 (2) ◽  
pp. 161-163 ◽  
Author(s):  
O. D. Brill' ◽  
V. M. Pankratov ◽  
V. P. Rudakov ◽  
B. V. Rybakov

1995 ◽  
Vol 30 (2) ◽  
pp. 141-148 ◽  
Author(s):  
Hisao YAMAMOTO ◽  
Toshiyuki NORIMURA ◽  
Akira KATASE ◽  
Kenji TOMURA

2008 ◽  
Vol 23 (27n30) ◽  
pp. 2313-2316 ◽  
Author(s):  
◽  
H. KANDA ◽  
N. CHIGA ◽  
Y. FUJII ◽  
K. FUTATSUKAWA ◽  
...  

The total cross sections for the π+π− photoproduction on the deuteron were measured in an energy range of 0.8 to 1.1 GeV. The obtained total cross section for the quasi-free π+π− photoproduction on the deuteron was about 60 % of those on the free proton. The cross section for Δ++Δ− photoproduction was derived from the non-quasi-free π+π− photoproduction events. It was smaller than the previous data.


2019 ◽  
Vol 97 (11) ◽  
pp. 1206-1209
Author(s):  
Ezgi Tantoğlu ◽  
Nalan Özkan ◽  
R. Taygun Güray

There are 35 proton-rich isotopes between 74Se and 196Hg that cannot be synthesized through neutron captures and β− decays (s- and r-processes). A third process is therefore required for the production of these nuclei, the so-called p-process. The abundance and the origin of the p-nuclei are still not fully understood even though significant experimental and theoretical efforts in astrophysical modeling have been expended in the last two decades. The experimental studies with the activation method to measure cross sections of the relevant reactions have some limitations: the reaction product must be radioactive, should have an appropriate half-life, and its decay should be followed by proper γ-radiations. If the cross section cannot be calculated with the radiation followed by the first beta decay of the product, it can be measured using the second beta decay as an alternative method. In this study, the method and candidate reactions for the cross-section measurements via the second beta decay of the reaction product using the activation method are discussed.


1984 ◽  
Vol 62 (1) ◽  
pp. 1-9 ◽  
Author(s):  
K. Becker ◽  
J. W. McConkey

We have studied the Lyman [Formula: see text] and Werner [Formula: see text] band emissions produced by 20–500-eV electrons incident on molecular deuterium, D2. Emission cross sections of (3.7 ± 0.9) × 10−17 cm2 for the B → X and (3.54 ± 0.74) × 10−17 cm2 for the C → X system have been determined at 100-eV impact energy. Cascading did not play an important role in the [Formula: see text] emission, but it was shown to affect the [Formula: see text] emission seriously, particularly for impact energies below 50 eV. We estimate the cross section for direct excitation of the [Formula: see text] state and the cascade cross section to be 2.95 × 10−17 and 0.75 × 10−17 cm2, at 100 eV respectively. The cascade cross section is 20 ± 10% of the total B → X emission cross section, and is essentially constant in the energy range 300–50 eV, but increases significantly for lower impact energies, e.g., to 40 ± 15% at 27.5 eV. The cross section for the atomic 2p → 1s Lyman α emission from D2 has also been measured and the value of 1.00 × 10−17 cm2 at 100 eV is 20% smaller than the cross section for Lyman α emission from H2.


1970 ◽  
Vol 48 (3) ◽  
pp. 275-278 ◽  
Author(s):  
J. Davis ◽  
S. Morin

We present cross-section calculations for excitation of singly-ionized barium ions by electron impact over the energy range from 3 to 100 eV. The cross sections were evaluated using Burgess' semiclassical method. Finally, our predictions are compared with two other current techniques and some recent experimental measurements. The agreement was found to be good.


Sign in / Sign up

Export Citation Format

Share Document