neutron energy
Recently Published Documents


TOTAL DOCUMENTS

818
(FIVE YEARS 100)

H-INDEX

32
(FIVE YEARS 3)

2022 ◽  
Vol 23 (2) ◽  
pp. 878
Author(s):  
Laura C. Paterson ◽  
Amy Festarini ◽  
Marilyne Stuart ◽  
Fawaz Ali ◽  
Christie Costello ◽  
...  

Theoretical evaluations indicate the radiation weighting factor for thermal neutrons differs from the current International Commission on Radiological Protection (ICRP) recommended value of 2.5, which has radiation protection implications for high-energy radiotherapy, inside spacecraft, on the lunar or Martian surface, and in nuclear reactor workplaces. We examined the relative biological effectiveness (RBE) of DNA damage generated by thermal neutrons compared to gamma radiation. Whole blood was irradiated by 64 meV thermal neutrons from the National Research Universal reactor. DNA damage and erroneous DNA double-strand break repair was evaluated by dicentric chromosome assay (DCA) and cytokinesis-block micronucleus (CBMN) assay with low doses ranging 6–85 mGy. Linear dose responses were observed. Significant DNA aberration clustering was found indicative of high ionizing density radiation. When the dose contribution of both the 14N(n,p)14C and 1H(n,γ)2H capture reactions were considered, the DCA and the CBMN assays generated similar maximum RBE values of 11.3 ± 1.6 and 9.0 ± 1.1, respectively. Consequently, thermal neutron RBE is approximately four times higher than the current ICRP radiation weighting factor value of 2.5. This lends support to bimodal peaks in the quality factor for RBE neutron energy response, underlining the importance of radiological protection against thermal neutron exposures.


2021 ◽  
Vol 16 (0) ◽  
pp. 1202108-1202108
Author(s):  
Yasuko KAWAMOTO ◽  
Kunihiro OGAWA ◽  
Mitsutaka ISOBE ◽  
Siriyaporn SANGAROON ◽  
Guoqiang ZHONG ◽  
...  

Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1372
Author(s):  
Fang Liu ◽  
Zhengtong Zhong ◽  
Bin Liu ◽  
Tianze Jiang ◽  
Hongchi Zhou ◽  
...  

The SARS-CoV-2 virus is deadly, contagious, can cause COVID-19 disease, and endangers public health and safety. The development of SARS-CoV-2 inactivation technology is crucial and imminent in current pandemic period. Neutron radiation is usually used to sterilize viruses because neutron radiation is 10 times more effective than gamma-rays in inactivating viruses. In this work we established a closed SARS-CoV-2 inactivation container model by the Monte Carlo method and simulated the inactivation performance by using several different neutrons sources. To study the effects of inactivation container factors, including the reflector thickness, the type of the reflector material, the SARS-CoV-2 layer area and the distance from the radiation source on the energy deposition of a single neutron particle in SARS-CoV-2 sample, we simulated the neutron energy deposition on a SARS-CoV-2 sample. The simulation results indicate that the saturated thicknesses of reflector materials for graphite, water and paraffin are approximately 30 cm, 15 cm, and 10 cm, respectively, and the energy deposition (radiation dose) becomes larger when the SARS-CoV-2 layer area is smaller and the SARS-CoV-2 layer is placed closer to the neutron source. The calculated single-neutron energy deposition on 10 × 10 cm2 SARS-CoV-2 layer is about 3.0059 × 10−4 MeV/g with graphite as the reflection layer, when the 14 MeV neutron source intensity is 1012 n/s and the SARS-CoV-2 layer is 5 cm away from the neutron source. If the lethal dose of SARS-CoV-2 is assumed as the IAEA recommended reference dose, 25 kGy, the SARS-CoV-2 could be decontaminated in about 87 min, and the sterilization time could be less than 52s if the 14 MeV neutron intensity is increased to 1014 n/s.


2021 ◽  
Vol 16 (12) ◽  
pp. T12010
Author(s):  
X. Li ◽  
Z. Wang ◽  
P. Qi ◽  
X. Chen ◽  
T. Gao ◽  
...  

Abstract Measuring the neutron energy spectrum is important in nuclear radiation detection and protection. Common neutron spectrometers include the Bonner sphere spectrometer (BSS), time-of-flight neutron spectrometer, and plastic scintillation detector. Among them, the BSS is the most widely used for its wide measurement range and simple operation. A BSS usually occupies a large space because it contains several independent spheres working at the same time, leading to poor consistency. This paper proposes a multi-layer single-sphere spectrometer using water as the moderator. The spectrometer includes a multi-layered sphere that can be filled with water or air and a ^3He proportional counter placed in the center of the sphere. To verify the feasibility of this design, we use Geant4 to calculate the moderating ability of water and the response functions of the multi-layer single-sphere spectrometer. Additionally, several standard neutron energy spectra (from IAEA) are used to test the response characteristics of this spectrometer through simulation. The simulation results prove the feasibility of the design. This research provides a theoretical basis for a multi-layer single-sphere neutron spectrometer with water as the moderator.


2021 ◽  
Vol 16 (12) ◽  
pp. C12025
Author(s):  
S. Sangaroon ◽  
K. Ogawa ◽  
M. Isobe ◽  
M.I. Kobayashi ◽  
Y. Fujiwara ◽  
...  

Abstract Tangential compact neutron emission spectrometer (CNES) based on the Cs2LiYCl6:Ce with 7Li-enrichment (CLYC7) scintillator is newly installed in the Large Helical Device (LHD). Measurement of neutron energy spectrum was performed using CNES in tangential neutral beam (NB) heated deuterium plasma discharges. The Doppler shift of neutron energy according to the direction of tangential NB injection has been obtained. When the fast ions moving away from the CNES, lower shifted neutron energy is obtained, whereas the upper shifted neutron energy is obtained when the fast ions moving toward the CNES. The obtained neutron energy is almost consistent with the virgin deuterium-deuterium neutron energy evaluated by the simple two-body kinematic calculation.


Sign in / Sign up

Export Citation Format

Share Document