Design of a new passive end-effector based on constant-force mechanism for robotic polishing

2022 ◽  
Vol 74 ◽  
pp. 102278
Author(s):  
Yuzhang Wei ◽  
Qingsong Xu
2012 ◽  
Vol 134 (3) ◽  
Author(s):  
Yi-Ho Chen ◽  
Chao-Chieh Lan

Force regulation is a challenging problem for robot end-effectors when interacting with an unknown environment. It often requires sophisticated sensors with computerized control. This paper presents an adjustable constant-force mechanism (ACFM) to passively regulate the contact force of a robot end-effector. The proposed ACFM combines the negative stiffness of a bistable mechanism and positive stiffness of a linear spring to generate a constant-force output. Through prestressing the linear spring, the constant-force magnitude can be adjusted to adapt to different working environments. The ACFM is a monolithic compliant mechanism that has no frictional wear and is capable of miniaturization. We propose a design formulation to find optimal mechanism configurations that produce the most constant-force. A resulting force to displacement curve and maximal stress curve can be easily manipulated to fit a different application requirement. Illustrated experiments show that an end-effector equipped with the ACFM can adapt to a surface of variable height, without additional motion programming. Since sensors and control effort are minimized, we expect this mechanism can provide a reliable alternative for robot end-effectors to interact friendly with an environment.


1994 ◽  
Vol 116 (3) ◽  
pp. 937-943 ◽  
Author(s):  
J. G. Jenuwine ◽  
A. Midha

A means of synthesis of single-input and multiple-output port mechanisms for specified energy absorption is formulated for multiple precision points. The synthesis presented makes use of an extension of the loop closure method which includes expressions for energy absorption by linear spring elements. The configuration considered locates spring elements at two output ports of a multi-loop, planar mechanism. Economies realized for the symmetric mechanism are discussed for both one- and two-plane symmetry. Synthesis examples are included for both the general and symmetric mechanism. Special applications presented include synthesis of a constant force mechanism and synthesis of a mechanism suited to the energy absorption requirements of an automotive crashworthiness system.


Author(s):  
Zhongtian Xie ◽  
Lifang Qiu

Compliant constant-force mechanisms (CFM) are a type of compliant mechanism which produce a reaction force at the output port that does not change for a large range of input motion. This paper describes a new compliant CFM, introduces its design and configuration-improvement process. A finite element analysis (FEA) model of the compliant CFM was created to evaluate its constant force behavior. The FEA result shows that when the displacement is Δ = 4 mm, the compliant CFM maintains a nearly constant force in the operational displacement range of 1.31 mm to 4 mm with an error of 5.05%. The operational range accounts for 67% of the total motion. This compliant CFM can be used to regulate the contact force of a robot end-effector or as an electrical connector.


2020 ◽  
Vol 15 (2) ◽  
Author(s):  
Werner W. P. J. van de Sande ◽  
Awaz Ali ◽  
Giuseppe Radaelli

Abstract Contact force management has been proven to have a positive effect on the outcome of cardiac ablation procedures. However, no method exists that allows maintaining a constant contact force within a required and effective range. This work aims to develop and evaluate such a constant force mechanism for use in an ablation catheter. A passive constant force mechanism was designed based on a tape loop. The tape loop consists of two tapered springs that work in parallel. A finite element analysis was carried out to verify the behavior and performance of the design. A design based on requirements for a constant force ablation tip showed an average force of about 7.8×10−2 N±8×10−3 N over 20 mm in simulation. A scaled prototype was built and evaluated to prove the validity of the concept; this prototype provides an average force of 1.3×10−1 N±1.6×10−2 N over 35 mm. The mechanism allows for controlled delivery of contact force within a desired and effective range. Based on these findings, it can be concluded that the approach is successful but needs to be optimized for future applications. Being able to control the delivery of contact force in a constant range may increase the effectivity of cardiac ablation procedures and improve clinical outcomes.


Author(s):  
Steven Hasara ◽  
Craig Lusk

This paper outlines the design of a compliant crank slider with adjustable constant-force output. Constant-force mechanisms (CFM) are used to maintain a constant output reaction force throughout a large range of compressive motion. This novel design improves on existing CFM by introducing a second degree of freedom that adjusts the mechanism’s output without changing its kinematic structure. This second degree of freedom is the rotation of a compliant beam about its longitudinal axis as it is constrained to the initial plane of bending. The resulting change in the beam’s stiffness allows for adjustment to a specifiable range of constant-force outputs.


Sign in / Sign up

Export Citation Format

Share Document