scholarly journals Complex movements induced by multiple vibrations after stroke: The stepping-in-place example

2012 ◽  
Vol 55 ◽  
pp. e12-e13
Author(s):  
C. Kemlin ◽  
C. Duclos
Keyword(s):  
2011 ◽  
Vol 113 (1) ◽  
pp. 331-338 ◽  
Author(s):  
Yoshifumi Ikeda ◽  
Yu Kamiyama ◽  
Hideyuki Okuzumi ◽  
Shogo Hirata ◽  
Mitsuru Kokubun

2005 ◽  
Vol 99 (1) ◽  
pp. 141-153 ◽  
Author(s):  
Micaela Schmid ◽  
Marco Schieppati

Neck proprioceptive input, as elicited by muscle vibration, can produce destabilizing effects on stance and locomotion. Neck muscle fatigue produces destabilizing effects on stance, too. Our aim was to assess whether neck muscle fatigue can also perturb the orientation in space during a walking task. Direction and amplitude of the path covered during stepping in place were measured in 10 blindfolded subjects, who performed five 30-s stepping trials before and after a 5-min period of isometric dorsal neck muscle contraction against a load. Neck muscle electromyogram amplitude and median frequency during the head extensor effort were used to compute a fatigue index. Head and body kinematics were recorded by an optoelectronic system, and stepping cadence was measured by sensorized insoles. Before the contraction period, subjects normally stepped on the spot or drifted forward. After contraction, some subjects reproduced the same behavior, whereas others reduced their forward progression or even stepped backward. The former subjects showed minimal signs of fatigue and the latter ones marked signs of fatigue, as quantified by the dorsal neck electromyogram index. Head position and cadence were unaffected in either group of subjects. We argue that the abnormal fatigue-induced afferent input originating in the receptors transducing the neck muscle metabolic state can modulate the egocentric spatial reference frame. Notably, the effects of neck muscle fatigue on orientation are opposite to those produced by neck proprioception. The neck represents a complex source of inputs capable of modifying our orientation in space during a locomotor task.


2005 ◽  
Vol 94 (1) ◽  
pp. 754-763 ◽  
Author(s):  
Yuri P. Ivanenko ◽  
Nadia Dominici ◽  
Germana Cappellini ◽  
Francesco Lacquaniti

When a toddler starts to walk without support, gait kinematics and electromyographic (EMG) activity differ from those of older children and the body displays considerable oscillations due to poor equilibrium. Postural instability clearly affects motor patterns in adults, but does instability explain why toddlers walk with a different gait? Here we addressed this question by comparing kinematics and EMGs in toddlers performing their first independent steps with or without hand or trunk support. Hand support significantly improved postural stability and some general gait parameters, reducing percent of falls, step width, lateral hip deviations and trunk oscillations. However, the kinematic and EMG patterns were unaffected by increased postural stability. In particular, the co-variance of the angular motion of the lower limb segments, the pattern of bilateral coordination of the vertical movement of the two hip joints, high variability of the foot path, the elliptic or single peak trajectory of the foot in the swing phase, and characteristic EMG bursts at foot contact remained idiosyncratic of toddler locomotion. Instead the toddler pattern shared fundamental features with adult stepping in place, suggesting that toddlers implement a mixed locomotor strategy, combining forward progression with elements of stepping in place. Furthermore, gait kinematics remained basically unchanged until the occurrence of the first unsupported steps and rapidly matured thereafter. We conclude that idiosyncratic features in newly walking toddlers do not simply result from undeveloped balance control but may represent an innate kinematic template of stepping.


2009 ◽  
Vol 30 (3) ◽  
pp. 317-321 ◽  
Author(s):  
Rebecca J. Reed-Jones ◽  
Mark A. Hollands ◽  
James G. Reed-Jones ◽  
Lori Ann Vallis

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2661
Author(s):  
Cameron Diep ◽  
Johanna O’Day ◽  
Yasmine Kehnemouyi ◽  
Gary Burnett ◽  
Helen Bronte-Stewart

Freezing of gait (FOG), a debilitating symptom of Parkinson’s disease (PD), can be safely studied using the stepping in place (SIP) task. However, clinical, visual identification of FOG during SIP is subjective and time consuming, and automatic FOG detection during SIP currently requires measuring the center of pressure on dual force plates. This study examines whether FOG elicited during SIP in 10 individuals with PD could be reliably detected using kinematic data measured from wearable inertial measurement unit sensors (IMUs). A general, logistic regression model (area under the curve = 0.81) determined that three gait parameters together were overall the most robust predictors of FOG during SIP: arrhythmicity, swing time coefficient of variation, and swing angular range. Participant-specific models revealed varying sets of gait parameters that best predicted FOG for each participant, highlighting variable FOG behaviors, and demonstrated equal or better performance for 6 out of the 10 participants, suggesting the opportunity for model personalization. The results of this study demonstrated that gait parameters measured from wearable IMUs reliably detected FOG during SIP, and the general and participant-specific gait parameters allude to variable FOG behaviors that could inform more personalized approaches for treatment of FOG and gait impairment in PD.


2015 ◽  
Vol 58 ◽  
pp. e71-e72
Author(s):  
B. Sijobert ◽  
C. Lebrun ◽  
V. Begel ◽  
C. Verna ◽  
G. Castelnovo ◽  
...  

2002 ◽  
Vol 87 (2) ◽  
pp. 1142-1144 ◽  
Author(s):  
Gammon M. Earhart ◽  
G. Melvill Jones ◽  
F. B. Horak ◽  
E. W. Block ◽  
K. D. Weber ◽  
...  

Following stepping in-place on the surface of a rotating circular treadmill, a subject attempting to step in-place or walk in a straight line across the floor without vision will rotate relative to space. This adaptation, termed podokinetic after-rotation (PKAR), transfers to backward walking following forward walking on the rotating disk. We asked whether adaptation obtained during stepping in-place on the rotating disk would transfer to hopping on both feet. We hypothesized that subjects would demonstrate PKAR during both hopping and stepping, adding support to the hypothesis that PKAR is a centrally mediated adaptation of general locomotor trajectory that is not specific to the form of locomotion used while on the rotating disk. Subjects demonstrated PKAR during both hopping and stepping after stepping in-place on the rotating disk. The time courses of PKAR during hopping and stepping were similar, although the angular velocity amplitude of PKAR was lower in hopping than in stepping. This difference in amplitude suggests an incomplete transfer of PKAR.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Samantha F. Ehrlich ◽  
Jill M. Maples ◽  
Cristina S. Barroso ◽  
Kathleen C. Brown ◽  
David R. Bassett ◽  
...  

Abstract Background Activity monitoring devices may be used to facilitate goal-setting, self-monitoring, and feedback towards a step-based physical activity (PA) goal. This study examined the performance of the wrist-worn Fitbit Charge 3™ (FC3) and sought opinions on walking and stepping-in-place from women with gestational diabetes (GDM). Methods Participants completed six 2-min metronome-assisted over ground bouts that varied by cadence (67, 84, or 100 steps per minute) and mode (walking or stepping-in-place; N = 15), with the sequence randomized. Steps were estimated by FC3 and measured, in duplicate, by direct observation (hand-tally device, criterion). Equivalence testing by the two one-sided tests (TOST) method assessed agreement within ± 15%. Mean absolute percent error (MAPE) of steps were compared to 10%, the accuracy standard of the Consumer Technology Association (CTA)™. A subset (n = 10) completed a timed, 200-m self-paced walk to assess natural walking pace and cadence. All participants completed semi-structured interviews, which were transcribed and analyzed using descriptive and interpretive coding. Results Mean age was 27.0 years (SD 4.2), prepregnancy BMI 29.4 kg/m2 (8.3), and gestational age 32.8 weeks (SD 2.6). The FC3 was equivalent to hand-tally for bouts of metronome-assisted walking and stepping-in-place at 84 and 100 steps per minute (i.e., P < .05), although walking at 100 steps per minute (P = .01) was no longer equivalent upon adjustment for multiple comparisons (i.e., at P < .007). The FC3 was equivalent to hand-tally during the 200-m walk (i.e., P < .001), in which mean pace was 68.2 m per minute (SD 10.7), or 2.5 miles per hour, and mean cadence 108.5 steps per minute (SD 6.5). For walking at 84 and 100 steps per minute, stepping-in-place at 100 steps per minute, and the 200-m walk, MAPE was within 10%, the accuracy standard of the CTA™. Interviews revealed motivation for PA, that stepping-in-place was an acceptable alternative to walking, and competing responsibilities made it difficult to find time for PA. Conclusions The FC3 appears to be a valid step counter during the third trimester, particularly when walking or stepping-in-place at or close to women’s preferred cadence.


Sign in / Sign up

Export Citation Format

Share Document