Exergy analysis of thermal energy storage in a district energy application

2015 ◽  
Vol 74 ◽  
pp. 848-854 ◽  
Author(s):  
Behnaz Rezaie ◽  
Bale V. Reddy ◽  
Marc A. Rosen
2021 ◽  
Vol 238 ◽  
pp. 03004
Author(s):  
Abdullah Bamoshmoosh ◽  
Gianluca Valenti

The sector of thermal energy storage shows a number of alternatives that could have a relevant impact on the future of energy saving as well as renewable energy technologies. Among these, latent heat thermal energy storage technologies show promising results. Technologies that exploit solid-liquid phase change have already been widely proposed, but those technologies show common drawbacks limiting their application, such as high cost, low energy storage density and particularly low heat transfer properties. This work proposes to exploit the liquid-vapor phase transition in closed and constant volumes because it shows higher heat transfer properties. Consequently, the objective is to assess its energy storage performances in target temperature ranges. With respect to previous activity by the authors, this work proposes an exergy analysis of these systems, gives a methodology their deployment, and proposes a comparison between a new storage condition for solar thermal domestic hot water systems exploiting vapor-liquid equilibrium and conventional technologies. The exergy analysis is performed in reduced terms in order to have a generalized approach. Three hypothetical fluids with increasing degree of molecular complexity are considered in order to have a complete overview of the thermodynamic behavior of potential heat storage fluids. The analysis shows that the increased pressure of liquid systems has a major impact on exergy, resulting in vapor-liquid systems having less than 50% of the exergy variation of pressurized liquid systems. This is proven to have no impact on thermal energy storage. For the case study, the proposed methodology indicates that water itself is a strong candidate as a heat storage fluid in the new condition. Comparison shows that the new condition has a higher energy storage capacity at same volume. The useful temperature range is increased by 108% by setting a 10.5% volume vapor fraction at ambient temperature. The resulting improvement gives a 94% higher energy storage, with a maximum operating pressure of the system of less than 5 bar.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4842 ◽  
Author(s):  
Ryszard Zwierzchowski ◽  
Marcin Wołowicz

The paper contains a simplified energy and exergy analysis of pumps and pipelines system integrated with Thermal Energy Storage (TES). The analysis was performed for a combined heat and power plant (CHP) supplying heat to the District Heating System (DHS). The energy and exergy efficiency for the Block Part of the Siekierki CHP Plant in Warsaw was estimated. CHP Plant Siekierki is the largest CHP plant in Poland and the second largest in Europe. The energy and exergy analysis was executed for the three different values of ambient temperature. It is according to operation of the plant in different seasons: winter season (the lowest ambient temperature Tex = −20 °C, i.e., design point conditions), the intermediate season (average ambient temperature Tex = 1 °C), and summer (average ambient temperature Tex = 15 °C). The presented results of the analysis make it possible to identify the places of the greatest exergy destruction in the pumps and pipelines system with TES, and thus give the opportunity to take necessary improvement actions. Detailed results of the energy-exergy analysis show that both the energy consumption and the rate of exergy destruction in relation to the operation of the pumps and pipelines system of the CHP plant with TES for the tank charging and discharging processes are low.


1988 ◽  
Vol 110 (4) ◽  
pp. 255-261 ◽  
Author(s):  
M. A. Rosen ◽  
F. C. Hooper ◽  
L. N. Barbaris

The use of exergy analysis, rather than energy analysis, for the evaluation of the performance of thermal energy storage systems is discussed. The energy and exergy relationships for a simple closed tank storage with heat transfers by heat exchanger are obtained. A complete storing cycle, as well as the individual charging, storing, and discharging periods, are considered. A numerical example for a simple case is given. The work reported is preliminary to the task of developing simplified conventions for the evaluation and comparison of the performance of thermal storages using exergy analysis methods. The establishment of such simplified conventions appears to be a necessary prerequisite to general acceptance of these methods by the engineering community.


Energy ◽  
2016 ◽  
Vol 113 ◽  
pp. 52-63 ◽  
Author(s):  
Kody M. Powell ◽  
Jong Suk Kim ◽  
Wesley J. Cole ◽  
Kriti Kapoor ◽  
Jose L. Mojica ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document