A Coral Reefs Optimization algorithm with Harmony Search operators for accurate wind speed prediction

2015 ◽  
Vol 75 ◽  
pp. 93-101 ◽  
Author(s):  
S. Salcedo-Sanz ◽  
A. Pastor-Sánchez ◽  
J. Del Ser ◽  
L. Prieto ◽  
Z.W. Geem
2020 ◽  
Vol 6 ◽  
pp. 1147-1159 ◽  
Author(s):  
Saeed Samadianfard ◽  
Sajjad Hashemi ◽  
Katayoun Kargar ◽  
Mojtaba Izadyar ◽  
Ali Mostafaeipour ◽  
...  

Author(s):  
Saeed Samadianfard ◽  
Sajjad Hashemi ◽  
Katayoun Kargar ◽  
Mojtaba Izadyar ◽  
Ali Mostafaeipour ◽  
...  

Wind power as a renewable source of energy, has numerous economic, environmental and social benefits. In order to enhance and control the renewable wind power, it is vital to utilize models that predict wind speed with high accuracy. Due to neglecting of requirement and significance of data preprocessing and disregarding the inadequacy of using a single predicting model, many traditional models have poor performance in wind speed prediction. In the current study, for predicting wind speed at target stations in the north of Iran, the combination of a multi-layer perceptron model (MLP) with the Whale Optimization Algorithm (WOA) used to build new method (MLP-WOA) with a limited set of data (2004-2014). Then, the MLP-WOA model was utilized at each of the ten target stations, with the nine stations for training and tenth station for testing (namely: Astara, Bandar-E-Anzali, Rasht, Manjil, Jirandeh, Talesh, Kiyashahr, Lahijan, Masuleh and Deylaman) to increase the accuracy of the subsequent hybrid model. Capability of the hybrid model in wind speed forecasting at each target station was compared with the MLP model without the WOA optimizer. To determine definite results, numerous statistical performances were utilized. For all ten target stations, the MLP-WOA model had precise outcomes than the standalone MLP model. The hybrid model had acceptable performances with lower amounts of the RMSE, SI and RE parameters and higher values of NSE, WI and KGE parameters. It was concluded that WOA optimization algorithm can improve prediction accuracy of MLP model and may be recommended for accurate wind speed prediction.


Author(s):  
K.S. Klen ◽  
◽  
M.K. Yaremenko ◽  
V.Ya. Zhuykov ◽  
◽  
...  

The article analyzes the influence of wind speed prediction error on the size of the controlled operation zone of the storage. The equation for calculating the power at the output of the wind generator according to the known values of wind speed is given. It is shown that when the wind speed prediction error reaches a value of 20%, the controlled operation zone of the storage disappears. The necessity of comparing prediction methods with different data discreteness to ensure the minimum possible prediction error and determining the influence of data discreteness on the error is substantiated. The equations of the "predictor-corrector" scheme for the Adams, Heming, and Milne methods are given. Newton's second interpolation formula for interpolation/extrapolation is given at the end of the data table. The average relative error of MARE was used to assess the accuracy of the prediction. It is shown that the prediction error is smaller when using data with less discreteness. It is shown that when using the Adams method with a prediction horizon of up to 30 min, within ± 34% of the average energy value, the drive can be controlled or discharged in a controlled manner. References 13, figures 2, tables 3.


Sign in / Sign up

Export Citation Format

Share Document