scholarly journals Dynamic load and stress analysis of a large horizontal axis wind turbine using full scale fluid-structure interaction simulation

2019 ◽  
Vol 140 ◽  
pp. 212-226 ◽  
Author(s):  
G. Santo ◽  
M. Peeters ◽  
W. Van Paepegem ◽  
J. Degroote
2020 ◽  
Vol 8 (5) ◽  
pp. 3478-3482

Wind power is a clean energy source that we can rely on for long term use. A wind turbine creates reliable, cost effective pollution free energy. A Horizontal axis wind turbine (HAWT) with three blades having aerofoil profile NACA 2421 is modelled in CAD software and the performance of the turbine is investigated numerically using 3D CFD Ansys 18.1 software at rotor speeds varying from 1 to 7.5 Rad/sec at wind speeds ranging from 8 to 24 m/s. In order to ensure the turbine blades do not fail due to pressure loads and rotational forces, Fluid structure interaction is carried out by importing the surface pressure loads from CFD output on to static structural module, the rotational velocities are also imparted on the blades and FE analysis is carried out to estimate the equivalent von-Mises stress for structural steel as well as aluminium alloy. It is found that aluminium alloy blades are preferable than the structural steel blades. At high rotor speeds, stresses in the structural steel exceeding the yield strength limit. For aluminium alloy the stresses are below the yield strength limit.


Author(s):  
Dubravko Matijašević ◽  
Zdravko Terze ◽  
Milan Vrdoljak

In this paper, we propose a technique for high-fidelity fluid–structure interaction (FSI) spatial interface reconstruction of a horizontal axis wind turbine (HAWT) rotor model composed of an elastic blade mounted on a rigid hub. The technique is aimed at enabling re-usage of existing blade finite element method (FEM) models, now with high-fidelity fluid subdomain methods relying on boundary-fitted mesh. The technique is based on the partition of unity (PU) method and it enables fluid subdomain FSI interface mesh of different components to be smoothly connected. In this paper, we use it to connect a beam FEM model to a rigid body, but the proposed technique is by no means restricted to any specific choice of numerical models for the structure components or methods of their surface recoveries. To stress-test robustness of the connection technique, we recover elastic blade surface from collinear mesh and remark on repercussions of such a choice. For the HAWT blade recovery method itself, we use generalized Hermite radial basis function interpolation (GHRBFI) which utilizes the interpolation of small rotations in addition to displacement data. Finally, for the composed structure we discuss consistent and conservative approaches to FSI spatial interface formulations.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 509 ◽  
Author(s):  
Gilberto Santo ◽  
Mathijs Peeters ◽  
Wim Van Paepegem ◽  
Joris Degroote

The effect of a wind gust impacting on the blades of a large horizontal-axis wind turbine is analyzed by means of high-fidelity fluid–structure interaction (FSI) simulations. The employed FSI model consisted of a computational fluid dynamics (CFD) model reproducing the velocity stratification of the atmospheric boundary layer (ABL) and a computational structural mechanics (CSM) model loyally reproducing the composite materials of each blade. Two different gust shapes were simulated, and for each of them, two different amplitudes were analyzed. The gusts were chosen to impact the blade when it pointed upwards and was attacked by the highest wind velocity due to the presence of the ABL. The loads and the performance of the impacted blade were studied in detail, analyzing the effect of the different gust shapes and intensities. Also, the deflections of the blade were evaluated and followed during the blade’s rotation. The flow patterns over the blade were monitored in order to assess the occurrence and impact of flow separation over the monitored quantities.


2020 ◽  
Vol 5 (1) ◽  
pp. 141-154 ◽  
Author(s):  
Yasir Shkara ◽  
Martin Cardaun ◽  
Ralf Schelenz ◽  
Georg Jacobs

Abstract. With the increasing demand for greener, sustainable, and economical energy sources, wind energy has proven to be a potential sustainable source of energy. The trend development of wind turbines tends to increase rotor diameter and tower height to capture more energy. The bigger, lighter, and more flexible structure is more sensitive to smaller excitations. To make sure that the dynamic behavior of the wind turbine structure will not influence the stability of the system and to further optimize the structure, a fully detailed analysis of the entire wind turbine structure is crucial. Since the fatigue and the excitation of the structure are highly depending on the aerodynamic forces, it is important to take blade–tower interactions into consideration in the design of large-scale wind turbines. In this work, an aeroelastic model that describes the interaction between the blade and the tower of a horizontal axis wind turbine (HAWT) is presented. The high-fidelity fluid–structure interaction (FSI) model is developed by coupling a computational fluid dynamics (CFD) solver with a finite element (FE) solver to investigate the response of a multi-megawatt wind turbine structure. The results of the computational simulation showed that the dynamic response of the tower is highly dependent on the rotor azimuthal position. Furthermore, rotation of the blades in front of the tower causes not only aerodynamic forces on the blades but also a sudden reduction in the rotor aerodynamic torque by 2.3 % three times per revolution.


2021 ◽  
Vol 78 ◽  
pp. 102970
Author(s):  
B. Wiegard ◽  
M. König ◽  
J. Lund ◽  
L. Radtke ◽  
S. Netzband ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document